Module 1 1

Microprocessor

* Microprocessors are multipurpose devices that can be designed for
generic or specialized functions.

|t is an integrated circuit contained on a single silicon chip, a
microprocessor consists of the arithmetic logic unit, control unit,
internal memory registers, and other vital circuitry of a computer's

central processing unit (CPU).

* A central processing unit (CPU) contained within a single chip
(integrated circuit). The term originated in the 1970s when processors
were first miniaturized. Today, all CPUs are microprocessors, and server,
desktop, laptop, smartphone and tablet microprocessors have more

than one processing unit (dual core and multicore)

3085 Microprocessor

e 8 bit Microprocessor
* 40 pin DIP (Dual Inline package)

* Based on Von-Neumann architecture in which the data and instructions
are in the same memory space without any distinction between them.
That means it uses the same bus for data and address, so speed of
operation is less compared to harvard architecture where separate
address and data buses are there to access address and data from from

the respective memory space.
* 5V, 3 MHz (internal) processor, 8 bit data and upto 16 bit address by
multiplexing.

Pin Diagram of 8085

X1

xX2

Reset out
SOD

SID
TRAP

RST7.§
RST6.5
RSTS.3
INTR
INTA
ADo
Al
AD-2
ADs3
ADg
ADs
ADs
AD~

V'ss

ORIk NN

8085

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23

22
21

YcCcC

Hold

HILDA

CLK (OUT)
RESET IN
READY

10O/M

¥ 2w
e

So

Als
Ala
Als
Alz
Al
Alo

Ao
As

8085 Architectu re

INTE TRAP =TS AT ES RETFS INTA

o Timi n;-iulmtfnl
wz -

TTTLTIITT LT I

E=in) iR 21 19/MW HOLD HLDA RESETI RESET OUT

Arithmetic & Logic unit:

Performs 8 bit arithmetic and logic operations.
Accumulator:

8 bit register, Also known as register A.

Most important general purpose register in 8085.

During arithmetic and logical operations, one of the operands will be in the accumulator, also
the results will be stored in accumulator.

Temperory register:

8 bit register to hold the second operand and intermediate results during arithmetic and logical
operations.

Not accessible to the programmer.
W and Z registers:

8 bit temperory registers, can be used as WZ register pair to hold the 16bit address while
executing certain instructions such as LDA C234H

B,C,D,E, H and L Registers:

All are 8 bit general purpose registers. But if needed we can use
register pairs as BC, DE, and HL to store the 16 bit information where
left side register in each pair contain the most significant byte and the
right side register contains the least significant byte.

HL register pair is more important as it has more functions such as it
can be used as a memory pointer while accessing memory location
with 16 bit address, also one operand during a 16bit addition etc
should be in the HL register pair.

Also there are more ways to address the HL register pair compared to
other register pairs.

FLAG Register in 8085:

D,

3 L A

Flag is an 8-bit register containing 5 1-bit flags:

Sign - set if the most significant bit of the result is set.

Zero - set if the result is zero.

Auxiliary carry - set if there was a carry out from bit 3 to bit 4 of the result.

Parity - set if the parity (the number of set bits in the result) is even.

Carry - set if there was a carry during addition, or borrow during subtraction/comparison.

Program Counter:

Program counter (PC) is a 16 bit register.

It contains the address of the next instruction to be executed.
After fetching the address from PC, it increaments by one.
Instruction Register:

Instruction register is a special purpose register used to receive the 8 bit opcode portion of an
instruction.

not accessible to the programmer.
Instruction Decoder:

Instruction decoder decodes the information present in the Instruction register. Based on that
the timing and control unit generates the timing sequences for executing that instruction.

Stack Pointer:
Stack pointer is a special purpose 16-bit register.
holds the address of the top of the stack.

Timing and Control Unit:

Responsible for generating timing and control signals to coordinate all the activities inside and
outside the 8085 microprocessor to obtain its

desired output.

The extrnal oscillator frequency is divided by 2 internally and the approximate maximum
internal frequency of operation of 8085 microprocessor is 3 MHz.

For an internal frequency of 3 MHz, the clock cycle or T state of 8085 is 333nS.

Also the minimum internal frequency of operation of 8085 is 500KHz.

Multiplexer / Demultiplexer

The registers B,C, D,E, H and L are connected to the internal data bus. So to choose a particular

register during a register write or read operation,we need to select the specific register as given
in the instruction.

MUX for register read and DeMUX for register write.

The Register select unit provides appropriate code to MUX or DeMUX to select the specific
register in the instruction.

Address/Data Buffers:

The purpose of the buffer is to provide a
means for electrically disconnecting the
output pin from the external bus when not
actually outputting data and the bus is
being driven from a different device.

The buffers are bidirectional when used for
data and unidirectional when used for
address.

+3V

Q1

Output
Inputs

Fig. Example for a Tristate buffer

Interrupts :

Interrupts are the signals generated by the external devices to request the
microprocessor to perform a task. There are 5 hardware interrupt signals, i.e. TRAP,
RST 7.5, RST 6.5, RST 5.5, and INTR.

An interrupt controller is an integrated circuit that helps microprocessor to handle
interrupt requests coming from multiple different sources (like external 1/O devices)
which may come simultaneously.

The TRAP has the highest priority followed by RST 7.5, RST 6.5, RST 5.5.
Serial 1/0O Controller:

8085 Microprocessor has two Serial Input/Output pins that are used to read/write
one bit data to and from peripheral devices.

SOD and SID pins.

Thank You

Module 1 2

Introduction to Microprocessor languages:

v Microprocessors can recognise and operate with binary numbers alone.
v’ Each microprocessor have its own binary words, meanings and languages for its operation.

v The Word or Word length is the number of bits the microprocessor can recognise and
process at a time. It can range from 4 bits (low speed) to 64 bits (high speed) or even more.

v' A byte is a group of 8 bits, or it consists of two nibbles (lower and upper 4 bits in a group of 8
bits)

bit
|_1|0|1|1|n|0|+::|1.|

v' To communicate with a micrc i n Binary language
(Machine language) which the specific processor can understand.

v’ To overcome the difficulty in writing instructions with 0’s and 1’s, microprocessor
manufacturers have formulated English like words to represent the binary instructions
specific for a processor, called Assembly language.

v’ The programs written in assembly language is not transferrable from one processor to
another (because processor specific).

v To overcome this , general purpose languages such as FORTRAN, ‘C’, Python etc are formed,
which are processor independent, called High level languages

Contd...

v'An Instruction is a binary pattern used to command the microprocessor to perform
a specific function.

v'The microprocessor developer selects combinations of bit patterns and gives
specific meaning to each combination by using electronic logic circuits, and is called
an Instruction. For example an 8 bit processor can have 28 = 256 combinations of
eight bits, or 256 words. Instructions are made up of one or several words.

v'The set of instructions made for a processor makes up its specific Binary or
Machine Language.

v'8085 is an 8 bit processor, with 74 different instructions.

v'For convenience, we can use hexadecimal code corresponding to a binary code, ie,
00110010 is a binary number can be written as 32,5 or 32 H. But it is still difficult to
write and understand programs using hex values.

v'To overcome this, manufacturers developed a symbolic code for each instruction
called mnemonic, which are processor specific. As an example binary code
00111100 or 3C H is represented by INR A, instruction to increment accumulator
register by one.

v'The complete set of 8085 mnemonics is called 8085 assembly language.

v'"Machine Language and Assembly language are processor specific and are called
Low Level Languages.

Contd...

v'Since the microprocessor can understand only binary values, the programs
written in assembly language has to be translated to binary equivalent either
manually (Hand assembly) or with the help of Assembler.

v'Assembler is a program which translates the mnemonics into its corresponding
binary machine codes.

v'Similarly processor or machine independent high level languages are translated
to binary equivalent (object code) with the help of Compiler or Interpreter.

v'Compiler is a program which translates high level languages in to machine
language . A compiler reads a given program (source code) entirely and
translates to machine code (object code).

v'Interpreter is a program which translates high level to machine language ,one
statement at a time.

Thank You

Module 1 3

Instruction Format of 8085:

* An instruction is a command to the microprocessor to perform a given task on a
specified data.

e Each instruction has two parts: one is task to be performed, called the operation
code (opcode), and the second is the data to be operated on, called the operand.
The operand (or data) can be specified in various ways. It may include 8-bit (or
16-bit) data, an internal register, a memory location, or 8-bit (or 16-bit) address.
In some instructions, the operand is implicit.

e The 8085 has 74 basic instructions and 246 total instructions. The instruction set
of 8085 is defined by the manufacturer INTEL Corporation.

* The size of 8085 instruction can be one-byte, two bytes or three bytes.

* A 1-byte instruction includes the opcode and operand in the same byte. These
instructions are stored in 8- bit binary format in memory; each requwes one

memory location. Task ﬁp U']H’I"lllll Bin: ry Hex
code Code Code
Example: Copy the contents of the accumulator mn | MOV | CA 0100 1111 | 4FH
the register C

Contd....

* In a two-byte instruction, the first byte specifies the operation code and the
second byte specifies the operand. Source operand is a data byte |mmed|ately

fOllOWIng the OpCOde | Task Opcode | Operand | Binary Hex Code
Code
Example: Load an 8-bit data | MVI A. Data BATE 1136 3E First Bvte
bvte i the = i
accumulator Data Second Byte
DATA

* In a three-byte instruction, the first byte specifies the opcode, and the
following two bytes specify the 16-bit address. Note that the second byte is
the low-order address and the third byte is the high-order address.

Example: Task Opcsde | Operand | Bimary code | Hex Code
| Transfer the | IMP 2085H - C3 First byte
program | 11000011
sequence 10 | e 85 Second Byte
the memory Bt
location [U0 OO 20 Third H-}-'ﬁ."
| 2085H :

Addressing Modes in 8085:
Addressing modes refers to the way in which the operand of an instruction
is specified. In 8085 there are five addressing modes.
* Immediate Addressing
* Direct Addressing
* Register Addressing
* Register Indirect Addressing
* Implied Addressing
1. Immediate Addressing:
The data is specified in the instruction itself.
Example: MVI B, 3EH

Moves the data 3EH given in the instruction to B-register.

Contd...
2. Direct Addressing:

The address of the data is specified in the instruction. The data will be in the
memory.

Example: LDA 1050H

Load the data available in memory location 1050H in accumulator

3. Register Addressing :
The instruction specifies the name of the register in which the data is available.
Example: MOV A, B

Moves the content of B-register to A-register.
4. Register Indirect Addressing:

The instruction specifies the name of the register in which the address of the

data is available. Here the data will be in memory and the address will be in a
register pair.

Example: MOV A, M
The memory data addressed by HL pair is moved to A-register.

Contd....
5. Implied Addressing:
In implied addressing mode, the instruction itself specifies the data to be
operated.
Example: CMA

Complements the content of accumulator.

Thank You

Module 1 4

Instruction Cycle in 8085:

* The Program and data which are stored in the memory, external to the microprocessor
are used for executing the complete instruction.

* The sequence of operations that a processor has to carry out while executing an
instruction is called instruction cycle.

e Each instruction cycle of a processor in turn consists of a number of machine cycles.
Thus to execute a complete instruction of the program, the following steps should be
performed by the 8085 microprocessor.

» Fetching the opcode from the memory;
» Decoding the opcode to identify the specific set of instructions;
» Fetching the remaining Bytes left for the instruction, if the instruction
length is of 2 Bytes or 3 Bytes;
» Executing the complete instruction procedure.
The given steps altogether constitute the complete instruction cycle.

Machine Cycle in 8085:

* The time required to access the memory or input/output devices is called Machine cycle.

* To execute an instruction, the processor will run one or more machine cycles in a particular
order.

* The seven Machine Cycle in 8085 Microprocessor are :
* Opcode Fetch Cycle
e Memory Read
* Memory Write
* 1/0O Read
* 1/O Write
* Interrupt Acknowledge
* Busldle

T-State:
* The machine cycle and instruction cycle takes multiple clock periods.

The T-state is the time period of the internal clock signal of the processor.

A portion of an operation carried out in one system clock period is called as T- state.

The time taken by the processor to execute a machine cycle is expressed in T-state

Instruction Set in 8085:
Classified as,

Data Transfer Instructions
Arithmetic Instructions
Logical Instructions
Branching Instructions

A

Machine Control Instructions
Data Transfer Instructions:

* The instructions that moves (copies) data between registers or between
memory location and register.

* In all data transfer operations, the content of source register or memory is
not altered. Hence the data transfer is copying operation.

Data transfer instructions contd...:
« MOV Rd, Rs (Rd) < (Rs)

* The content of source register (Rs) is copied to the destination register (Rd). The registers Rd
and Rs can be any one of the general purpose registers A, B, C, D, E, H or L.

* No flags are affected.

Example : MOV B, C (B) « (C)
The content of C-register is moved fo the B-register,

Before execution After execution|
B C B C

cz] [E i [E]

One byte instruction

One machine cycle : Opcode fetch - 4T

Register addressing

Total number of instructions = 49

Contd...
« MOV Rd, M (Rd) & (M) or (Rd) & ((HL))

* The content of memory (M) addressed by the HL pair is moved to the destination register (Rd).
The register Rd can be any one of the general purpose registers A, B, C, D, E, H or L.

No flags are affected.

One byte instruction

Example ; MOV A, M (A)« (M) or (A) <« ((HL))
e Two machine cycles: The content of memory addressed by HL pair is moved to the A-register
Opcode fetch - 4T Before execution After execution
A H L Memory A H L Memory
Memory read - 3T = = = =1 5 7] i
Total - 7T 12 |CosA 12 |Co5A
: . , 35 |cosB 35 |cosB
* Register indirect addressing J

Total number of instructions = 7
MOV A, M MOV B, M MOV C, M MOV D, M MOV E, M MOV H, M MOV L, M

Contd...

* MOV M, Rs (M) & (Rs) or ((HL)) ¢ (Rs)

* The content of source register (Rs) is moved to the memory location addressed by HL pair. The
register Rs can be any one of the general purpose registers A, B, C, D, E, H or L.

No flags are affected.

) One byte instruction E:: T::I;F m':ﬂzi::n'ﬁ?er 5 moved fo memﬂf}“h?n;ﬁfn]addr:;sed EJT;E;_ J::JT'
 Two machine cycles : Before execution After execution
Opcode fetch -4T }E CHE ﬁtﬂ Memory ??1 ;; o ELD Memory
Memory write - 3T e Joden ' 74 Jcaso
15 JC251 152 |C251
e Register indirect addressing

e Total number of instructions = 7
MOV M,A MOVM,B MOVM,C MOVM,D MOVM,E MOVM,H MOV M, L

Thank You

Module 1 5

Data transfer Instructions Contd....
e MVIRd, d8 (Rd) €& d8

* The 8-bit data (d8) given in the instruction is moved to the destination register
(Rd). The register Rd can be any one of the general purpose registers A, B, C, D,

E, HorL.

Example : MVI D,09H (D) «- 09,
* No flags are affected.

The 8-bit data 09, given in the instruction is moved to the D-register

* Two byte instruction Before execution After execution

* Two machine cycles: D D

Opcode fetch - 4T ki

Memory read - 3T
* Immediate addressing mode

 Total number of instructions =7
MVI A, d8 MVI B, d8 MVI C, d8 MVI D, d8 MVI E, d8 MVI H, d8 MVI L, d8

Contd...

* MVI M, d8 (M) & d8 or ((HL)) < d8
* The 8-bit data (d8) given in the instruction is moved to the memory location

addressed by the HL pair.

e No ﬂags are affected. Example : MVIM, ETH (M)« E7, or ((HL) «ET,
T b . . The 8-bit data ET, given in the instruction is moved fo the memory location addressed by the HL pair

o

WO yte Instruction Before execution After execution
* Three machine cycles : Memory Memory

H L
e Opcode fetch - 4T T B : E7 | 205¢
P so] |28] 205C 20 56 k—
* Memory read - 3T 3A | 2050 — = |3A]| 205D

* Memory write - 3T
* Register indirect addressing
* Or Immediate addressing
* Total number of instructions =1

Contd...
* LDA addrl6 (A) & (M) or (A) & (addrl6)

* The content of the memory location whose address is given in the instruction, is
moved to accumulator.

* No flags are affected. Example : LDA 205DH (A) « (205D,
The content of the memory location 205D, is moved to the A-register.

* Three byte instruction

Before execution After execution
ormeces: [Ty | e
P C2 15 |205D 15 |205D
e Memory read - 3T ==1o0se =y
* Memory read - 3T -

* Memory read - 3T

* Direct addressing
e Total number of instructions = 1

Contd...
e LHLD addr16 (L) €& (M) or (L) ¢ (addrl6)
(H) €< (M) or (H) ¢ (addrl6 +01)
* The content of the memory location whose address is given in the instruction, is
moved to the L-register. The content of the next memory location is moved to the H-

register.

* No flags are affected. Example : LHLD 1050H (L) < (1050,)
* Three byte instruction (H) « (1051,)
. . The content of the memory location 1050, is moved fo the L-register
* Five machine CyC|eS: The content of the memoary location 1051, is moved fo the H-register
* Opcode fetch - 4T Before execution After execution
e Memory read - 3T "
« Memory read - 3T "I S s L.
e Memory read - 3T 05] [72] [6A J10s0 . gg :gﬁ
.) 3D [1051
Memory read - 3T 09 hosz [09 |1052

* Direct addressing
e Total number of instructions =1

Data Transfer Instructions Contd....

* LXI rp, d16 (rp) € d16

* The 16-bit data given in the instruction is moved to the register pair (rp). The
register pair can be BC, DE, HL or SP.

* Three byte instruction

* Three machine cycles :
e Opcode fetch - 4T
* Memory read - 3T
e Memory read - 3T

* Immediate addressing
e Total number of instructions = 4

Example : LXI H, 1050H

(L) « 50,
(H) « 10,

The 16-bit data 1050, given in the instruction is moved fo the HL register pair

Before execution

After execution

H L

ALK Yy
(some arbilrary value)

H ks

%] [

LXI B, d16 LXI D, d16 LXIH, d16 LXISP, d16

Contd....

* LDAX rp (A) €& (M) or (A) €& ((rp))

* The content of the memory addressed by the register pair (rp) is moved to the
accumulator. (The content of the register pair is the memory address). The
register pair can be either BC or DE.

* One byte instruction

* Two machine cycles:
e Opcode fetch - 4T
e Memory read - 3T

* Register indirect addressing

Example : LDAX B

(A) < (M) or (A)« ((BC)

The content of the memory location addressed by the BC pair is moved fo the A-register

Before execution

After execution

A

Memory

02 20

oA

1E
3C

205A,
2058

Mem
A B i 4

|1E| 20 5A 1E |205A
3C |2058

e Total number of instructions = 2

LDAX B LDAXD

ontd....
* STA addrlé6 (M) & (A) or (addr16) < (A)

* The content of the accumulator is moved to the memory . The address of the
memory location is given in the instruction.

* No flags are affected. Example - STA 20501 50 < A
° Three byte instruction The content of the ac::a.jmu.'amrr's moved fo miemory location 2050, .
Before execution After execution
* Four machine cycles: y Memoy , Memory
* Opcode fetch -4T F4 06 J2050 [Fa]->{Fa_|vs0
* Memory read - 3T e o g

e Memory read - 3T
* Memory write- 3T

* Direct addressing Mode
e Total number of instructions = 1

ontd....
 SHLD addrl6 (M) & (L) or (addril6) < (L)

(M) & (H) or (addrl6+1) & (H)

* The content of the L-register is stored in the memory location, whose address is given
in the instruction. The content of the H-register is stored in the next memory location.

* No flags are affected.

* Three byte instruction sramples - SHED SR ::'E:::h'}
* Five machine cycles: The content of the L-register is stored in the memory location 3054,
o Op code fetch - 4T The content of the H-register is stored in the memory location 3058,
e Memory read - 3T Before execution After execution
* Memory read - 3T ;z ; Memory CHE ; Memory
* Memory write - 3T %gg;;‘ |_||:% Ei;‘
* Memory write - 3T ¢ 13050 76 T

* Direct addressing
e Total number of instructions = 1

Data transfer instructions Contd....
* SPHL (SP) € (HL)
* The content of the HL pair is moved to the Stack Pointer (SP).

* No flags are affected.

Example : SPHL (SP) « (HL)
* One byte instruction The content of the HL pair is copied to the Stack Pointer (SP).
Before execution After execution

* One machine cycle:
SP H L SP H L

e Opcode fetch - 6T e |ﬂ Iil _‘13\0_1_}_' e e

* Implied addressing

e Total number of instructions =1

Thank You

MPES
Module 1_6

Data transfer instructions contd....
XCHG (E) > (L)
(D) € (H)
* The content of the HL pair is exchanged with the DE pair.

* No flags are affected.

Example : XCHG (E)«> (L) and (D)<« (H)
* One byte instruction The content of the Eegister is exchanged with the L-vegister and the content of the D-register is exchanged with the H-register
Before execution After execution

* One machine cycle:
D E H L D H L

E
° OpCOde fetch - 4T 24 C7 A3 49 ﬁll |4Tﬂj_| 24 C7

* Implied addressing
 Total number of instructions =1

Contd...
PUSH rp (SP) < (SP)-1; ((SP)) € (rp)4
(SP) & (SP)-1; ((SP)) € (rp),

* The content of the register pair (rp) is pushed to the stack. After execution of this
instruction, the content of the Stack Pointer (SP) will be 02 less than the earlier value.

* The register pairs can be BC, DE , HL and PSW.
* No flags are affected.

 PSW (Program Status Word) : Accumulator and Flag register together called PSW.
Accumulator is high order register and Flag register is low order register.

* The instruction is executed as follows:
(i) The content of the SP is decremented by one.
(ii) The content of the high order register is moved to memory addressed by SP.
(iii) The content of the SP is decremented by one.
(iv) The content of the low order register is moved to memory addressed by SP

Contd....

* One byte instruction

* Three machine cycles:
 Opcode fetch - 6T
* Memory write - 3T i
* Memory write - 3T

* Register indirect addressing

Example

PUSHB

(SP) « (SP)-01

((SP)) « (B)

(SP) «(SP)- 01

((SP)) «{(C)

il The content of the SP is decremented by one.
The content of the B-register is moved to the memory addressed by the Stack Pointer (SP).
Again the confent of SP is decremented by one.
The confent of the C-register is moved to the memory addressed by SP

Before execution After execution
Stack Memory Stack Memory
B C SP B & SP
.ol [a] [z0s3] &2 ol [al [z051 XX | 204F] 82
XX Eﬂmlﬁé XX | 2050 | @ @
4 =
2052 J _ - 2052 1 %J_ﬁ
et P | =3 o
Top of stack —{ 4 3 | 2053 | '_E_ﬁ 3 | 2053 Jéﬂ B
15 | 2054 | é 2 2054

 Total number of instructions = 4

PUSH PSW PUSH B PUSH D PUSHH

Contd...
POP rp (rp)L & ((SP)) ; (SP) & (SP) +1
(rp)H < ((SP)) ; (SP) & (SP) +1

* The content of top of stack memory is moved to the register pair. After execution of
this instruction the content of the Stack Pointer (SP) will be 02 greater than the earlier
value.

* The register pairs can be BC, DE , HL and PSW.
* No flags are affected.

* PSW (Program Status Word) : Accumulator and Flag register are together called PSW.
The accumulator is a high order register and the flag register is a low order register.

* The pop instruction is executed as follows:
(i) The content of the memory addressed by the SP is moved to the low order register.
(ii) The content of the SP is incremented by one.
(iii) The content of the memory addressed by the SP is moved to the high order register.

(iv) The content of the SP is incremented by one.

TR =S 7 O id 7 —
7 A=¢O) [T71—m=m OO

Q ﬁﬂg mﬁi‘d of the mm%‘yTﬂﬁmssed by the 5Pis moved to the E-register
@ QM@W ofthe SP § irjcremanted by one.

(i) nf of the addressed by the SF is moved fo the D-register
OO e rasran

ent of the SP 1§ incremented by one.

%

Before execution

After execution

D E 8P [XX

Sack Memory

20 | [1D] [1000 | | XX

EZ SE

Top of stack —»

Top of stack—o CO

|;QE}|FH

1F

g

e, e

1003

Occupied
slack

Stack Memory
SP XX | OFEF
[1002 xX |orrr | &%
Nk a9
5€ |1000 [@ @
E2 |1001

onta....
IN addr8 (A)& (addr8)

* The content of the port is moved to the A-register.

* The 8-bit port address will be given in the instruction.
* No flags are affected.

* Two byte instruction

* Three machine cycles:
* Opcode fetch - 4T
e Memory read - 3T
* |Oread- 3T

* Direct addressing
e Total number of instructions = 1

Data transfer instructions Contd....
OUT addr8 (addr8) & (A)

* The content of the A-register is moved to the port.

* The 8-bit port address will be given in the instruction.
* No flags are affected.

* Two byte instruction

* Three machine cycles:
* Opcode fetch - 4T
e Memory read - 3T
* |O write - 3T

* Direct addressing
e Total number of instructions =1

[In an 8085 processor-based system when the IO devices are mapped by 10 mapping then the processor can communicate
with these |0 devices only by using IN and OUT instructions. The processor uses an 8-bit address to select I0O-mapped IO
devices.]

Stack in 8085:

The stack is a portion of RAM memory defined by the user for temporary storage and retrieval of data while
executing a program.

The microprocessor will have a dedicated internal register called Stack Pointer (SP) to hold the address of the stack.

Also, the processor will have a facility to automatically decrement/increment the content of SP after every
write/read operation into stack.

The user can initialize or create a stack by loading a RAM address in the Stack Pointer (SP).

Once an address is loaded in SP, the RAM memory locations below the address pointed by SP are reserved for
stack. Typically 25 to 100 RAM memory locations are sufficient for stack.

The user should take care that the reserved RAM memory locations for stack are not used for any other purpose.

The user has to create/implement a stack whenever the program consists of PUSH, POP, RST n, CALL and RET
instructions. Also, the stack is needed whenever the system uses interrupt facility.

In a program, when the number of the available registers are not sufficient for storing intermediate result and data,
then some of intermediate result and data can be stored in a stack using PUSH instruction and retrieved whenever
required using POP instruction.

The CALL instruction and the interrupts store the return address (content of program counter) in the stack before
executing the subroutine. Usually the subroutines are terminated with RET instruction. When RET instruction is
executed, the top of stack is poped to program counter and the program control returns to the main program after
the execution of subroutine.

Stack in 8085 contd...

Memory Memony

\ddress Location

r_lll!lu
400
| My HIHIE
Stack AQHM
JOHLD
u41"|f |
010 X
LTI 4011 L%,]
t :._I_ ”l.. .I'I__ll E I\-l'
Stack a2 | oxx
4013 | xX
L .]|.|| | "-.l-l

Fig. Example for Stack in 8085

* In an 8085 processor, for every write operation into
stack, the SP is automatically decremented by two and
for every read operation from stack, the SP is
automatically incremented by two.

* Hence, data can be stored only in lower addresses
from the address pointed by SP. Therefore, we can say
that the SP holds the address of the top of stack.

* The storage and retrieval in stack are in reverse order,
because the SP is decremented for every write
operation into stack and SP is incremented for every
read operation from stack. Therefore, the stack in
8085 is called Last-In-First-Out (LIFO) stack, i.e., the
last stored information can be read first.

MPES
Module 1_7

Arithmetic Instructions in 8085:
ADD reg (A) & (A) + (reg)

 The content of the register is added to the content of the accumulator (A-register). After
addition the result is stored in the accumulator.

 All flags are affected.
* The register can be any one of the general purpose register A, B, C, D, E, H or L.
* One byte instruction

* One machine cycle: Example : ADD E (A) « (A) + (E)
¢ OpCOde fetch - 4T The content of the E-registar is added to the content of theA-register
¢ Register addressing The rasull will be in the A-register. Al flags are affected
Before execution Addition After axecution
A E C2, = 1100 0010 A E
c2 Ba TA B8
e B8, = 1011 1000 il
PE = 0 [1o111 1010 PE = 0
* AF = 0 Sum = 0111 1010=7A, o =9
ZF = 0 Py ZF = 0
: : of = N Addit formed in ALU =
e Total number of instructions = 7 EVESRIA I PO 0

ADDA ADDB ADDC ADDD ADDE ADDH ADDL

Arithmetic Instructions Contd....
ADI d8 (A) & (A) + d8

* The 8-bit data given in the instruction is added to the content of the A-register
(Accumulator). After addition, the result is stored in the accumulator.

* All flags are affected.
* Two byte instruction

* Two machine cycles:
* Opcode fetch - 4T
* Memory read - 3T

* Immediate addressing
 Total number of instructions =1

Arithmetic Instructions Contd....

ADD M (A) & (A) + (M) or (A) & (A) + ((HL))
* The content of memory addressed by HL pair is added to the content of the A-

register. After addition, the result is stored in the A-register.

 All flags are affected.
* One byte instruction
* Two machine cycles:

Example : ADD M

Let the content of A be 44
Let the content of memary location CO0A be 73,
The content of the memory location CO0A, is added to the confent of theA-register. The result is put back in the A-register

(A) « (A) + (M)

or (A)« (A) + ((HL))

* Opcode fetch - 4T

Before execution

Addition

After execution

* Memory read - 3T - IE:'H';A
CF = 0
PF = 0
AF = 0
ZF = 0
sF = 0

Memory

13

14

27

CO0A
CodB
Co0C

44_ = 0100 0100

73, = 0111 0011
1011 0111

Sum = BY
Carry=0

(Addition is performed in ALU)

A HL Memory
B7 LO0A| I73]cooA
CF = 0 14 |CO0B
PF = 1 27 |CooC
AF = 0

ZF = 0

SF = 1

* Register indirect addressing

e Total number of instructions = 1

Arithmetic Instructions Contd....
ACl d8 (A) & (A) + d8 + CF

* The 8-bit data given in the instruction and the carry flag (the value of carry flag
before executing this instruction) are added to the content of the A-register
(Accumulator). After addition, the result is stored in the accumulator.

 All flags are affected.
* Two byte instruction

* Two machine cycles :
* Opcode fetch - 4T
e Memory read - 3T

* Immediate addressing
e Total number of instructions =1

Arithmetic Instructions Contd....
ADC reg (A) & (A) + (reg) + CF

* The content of the register and the carry flag are added to the content of the A-register.

After addition, the result is stored in the A-register.

All flags are affected.

One byte instruction

The register can be any one of the general purpose register A, B, C, D, E, H or L.

Example

One machine cycle :
* Opcode fetch - 4T

ADC H

The content of the Hregister and the value of the carry flag (before executing this instruction) are added to the
cantent of the A-egister. Affer addifion, the resulf will be in the A-register

(A) < (A) + (H) + CF

Register addressing

Before execution

Addition

After execution

A

43

CF
PF
AF
ZF
SF

H

TA

- 000 ==

43, =0100 0011
7A, =0111 1010
CF = 1

1011 1110

Sum =BE
Camy=0

(Addition is perfformed in the ALU)

A H
BE TA
CF = 0
PF = 1
AF = 0
ZF = 0
SF = 1

e Total number of instructions = 7

ADCA ADCB ADCC ADCD ADCE ADCH ADCL

Arithmetic Instructions Contd....

ADC M (A) & (A) + (M) +CF or (A) & (A)+ ((HL)) + CF

* The content of the memory addressed by the HL pair and the value of the
carry flag (before executing this instruction) are added to the content of A-
register. After addition, the result is stored in the A-register.

 All flags are affected.
* One byte instruction

 Two machine cycles:
e Opcode fetch - 4T
e Memoryread-3T

e Register indirect addressing
* Total number of instructions =1

Arithmetic Instructions Contd....

INR reg (reg) € (reg) + 01
* The content of the register is incremented by one. Except carry flag, all other

flags are affected.

* The register can be any one of the general purpose register A, B, C, D, E, H or L.

* One byte instruction
* One machine cycle:

Example : INR B (B) « (B) + 01

The content of the B-register is incremented by one. The increment opertation is performed by adding

01, to the content of B-register.

{] -
Opcode fetch - 4T Before execution Increment Operation After execution
* Register addressing . gi = g 4A, = 0100 1010 B g: =
- = 45 =
A AE = O +01, = 0000 0001 AF = 0
ZF = 0 0100 1011 ko= 0
SF =0 1 B SF = 0

* Total number of instructions =7

INRA INRB INRC INRD INRE INRH

INR L

Arithmetic Instructions Contd....
INR M (M) &< (M)+01 or ((HL)) €« ((HL)) +01
* The content of the memory addressed by the HL pair is incremented by one.
* Except carry, all other flags are affected.

* One byte instruction Example: INR M (M) < (M) + 01
. Let the content of the HL pair be CO0A, Let the content of memory location CO0A, be C5.. The content of the memary
¢ Th Free mac h Ine CyC I es . location CO0A, is incremented by one. The increment operation is performed by adding 01, to the contfent of the memory:

° Opcode fetch -4T Before execution Increment Operation After execution
HL Memory HL Memaory
e Memory read - 3T — s
. C5 |CooA CS5, = 1100 0101 C6 |CooA

* Memory write - 3T CF = 0 [A2 |cooe PO = 060 OBO1 CF = 0 [Az |cooB

PF = 0 07 " PF = 1 07

AF = 0 Co0C 1100 0110 AF = 0 Cinc

ZF = 0 C g ZF = 0

A « 4 SF = 1

* Register indirect addressing
* Total number of instructions =1

Arithmetic Instructions Contd....

INX rp (rp) € (rp) + 01

* The content of the register pair is incremented by one.
* The register pair can be BC, DE, HL or SP.

* No flags are affected.

Example : INXH (HL) <« (HL) + 01
* One byte instruction The content of the HL pair is incremented by one.
e One machine cycle : Before a}:a;utian After ;:E:minn
* Opcode fetch - 6T OFF 100

* Register addressing
e Total number of instructions = 4
INXB INXD INXH INXSP

Arithmetic Instructions Contd....
DAD rp (HL) & (HL) + (rp)
* (DAD - Double Addition)

* The content of the register pair is added to the content of the HL pair.
After addition, the result is stored in the HL pair.

* Only the carry flag is affected.
* The register pair can be BC, DE, HL or SP.
* One byte instruction

* Three machine cycles:
 Opcode fetch - 4T
* Busidle-3T
* Busidle-3T

* Register addressing
e Total number of instructions = 4
DADB DADD DADH DADSP

MPES

Module 1 8

Arithmetic Instructions Contd....
SUB reg (A) & (A) — (reg)

* The content of the register is subtracted from the content of the accumulator
(A-register). After subtraction the result is stored in the A-register.

* All flags are affected.

* The register can be any one of the
general purpose register A, B, C, D,
E,H or L.

Example: SUBC (A) « (A)=(C)
The content of the C-register is subfracted from A-register. The result will be in the A-regisfer

Casel
Before execution Subtraction
A C
C4 =11000100 =194
ca 89 " e
89.=10001001 =137d
CF =10 i
PF = 0 1's complement of 89, = 0111 0110
AF = 0 Z2's complement of 88 = 01110110 + 1
ZF = 0 =011 0111 =77,
SF = 1
After execution C4, =1100 0100
A c
B B9 +77, =011 01N
0011 1011 =594
CF = 0 o il
mplemenl
PF = 0 r:m.«lS B
AF = 0 0]
ZF = 0 Result =3B,
SF = 0 CF =0

Contd.... Case ii
Before execution Subtraction
A C 89, = 1000 1001 =137d
89 Cc4
C4,=1100 0100 =196 d
Elf - g 1's complement of C4,, = 0011 1011
AF = 0 2's complement of C4,,=0011 1011 +1
* One byte instruction ZE = 1 = 0011 1100 = 3C,
* One machine cycle: SF = 1
Opcode fetch - 4T
* Register addressing Case ii continued ...
* Total number of instructions = 7 After execution Subtraction
SUBA SUBB SUBC SUBD SUBE A G 89,, =1000 1001
SUBH SUBL L c4 +3C,, =0011 1100
g:: s : [B]1100 0101 =1974
AF = 1 G"“"‘f-;“‘?.lj* C 5
ZF = 0
aes e Result=C5,,
CF =1
Note : 25 complement of C5,, = 3B,

Note : The 8085 microprocessor performs 2's complement subtraction. But after subtraction, it will complement
the carry alone. In 2% complement subtraction, if CF =1, then the result is positive and if CF =0, then the result is
negative. Since, the 8085 processor complements the carry after subtraction, here if CF =0, then the result is positive and
if CF = 1, then the result is negative. Ifthe result is negative, then it will be in 2’s complement form.

Contd....

SUI d8 (A) €< (A)-d8
* The 8-bit data given in the instruction is subtracted from the A-register (accumulator). After subtraction, the
result is stored in the A-register.
All flags are affected.
Two byte instruction
Two machine cycles :

* Opcode fetch -4T

e Memory read - 3T
Immediate addressing
* Total number of instructions =1
SUB M (A) € (A)—(M) or (A) < (A)-((HL))
* The content of the memory addressed by the HL pair is subtracted from the A-register. After subtraction, the

result is stored in the A-register.
» All flags are affected.
* One byte instruction
* Two machine cycles :

* Opcode fetch - 4T
e Memory read - 3T

* Register indirect addressing
* Total number of instructions =1

Contd....
SBB reg (A) € (A) —(reg) — CF

* The content of the register and the value of carry (before executing this
instruction) are subtracted from the accumulator (A-register). After subtraction,
the result is stored in the accumulator.

 All flags are affected.
* The register can be any one of the general purpose register A, B, C, D, E, H or L.
* One byte instruction

* One machine cycle :
* Opcode fetch - 4T

* Register addressing
 Total number of instructions = 7
SBB A SBB BSBB CSBB D SBB ESBB HSBB L

Arithmetic Instructions in 8085 Contd...
SBI d8 (A) ¢ (A) —d8 - CF

* The 8-bit data given in the instruction and the value of carry (before executing this instruction) are subtracted
from accumulator. After subtraction, the result is stored in the accumulator.

* All flags are affected.
* Two byte instruction

* Two machine cycles :
* Opcode fetch - 4T
e Memory read - 3T

* Immediate addressing
* Total number of instructions =1
SBB M (A) < (A)-(M)-CF or (A) ¢ (A)-((HL))-CF

* The content of the memory addressed by HL and the value of carry (before executing this instruction) are
subtracted from accumulator (A-register). After subtraction, the result is stored in the A-register.

All flags are affected .
One byte instruction

Two machine cycles:
* Opcode fetch - 4T
e Memory read - 3T

Register indirect addressing
Total number of instructions =1

Contd....
DCR reg (reg) € (reg) — 01

* The content of the register is decremented by one.
* Except carry, all other flags are affected.

The register can be A, B, C, D, E, H or L.

One byte instruction

. fetch - 4T i i -
.OpCOde et _ The content of the D-register is decremented by one. The decrement operation is performed 0y subtracing 01, from the
* Register addressing content of the D-register.
Before execution Decrement operation
= CF =0 01,,=0000 0001
60 Pe = % 1'scomplementof01_=1111 1110
QE . g 2's complement of 01, = 1111 1110+ 1
SE = O =111 1111=FF,,
After execution 60, = 0110 0000
CE = 0 +FF, =1111 1111
2 PF = 1
5F wE o on [1]0101 1111
ZF = 0 Ei
* Total number of instructions =7 Sk = @ okl et

DCRA DCRB DCRC DCRD DCRE DCRH DCRL

Contd...

DCR M (M)&< (M)-01 o
* The content of memory addressed by the HL pair is decremented by one.

r ((HL)) € ((HL)) - 01

* Except carry, all other flags are affected.

* One byte instruction

* Three machine cycles :
 Opcode fetch -4T
* Memory read - 3T
* Memory write - 3T

* Register indirect addressing
* Total number of
Instructions =1

Example:

DCR M

(M) « (M) - 01

Lel the confent of the HL pair be 2010... Let the content of memory localion 2010, be FA,. The confent of

memaory location 2010, is decremented by one

Before execution

Decrement operation

HL Memory
2010 FA |2010
CF = 0D 02 12011
PF = 0
AF = 0
ZF = 0
SF = 0

After execution

HL Memory
2010 F9 |2010
CF = 0 02 12011
PF = 1
AF = 1
ZF = 0
SF = 1

01,,=0000 0001

1's complement of 01 = 1111 1110

2's complementof01, =1111 1110 +1
=111 1M11=FF,

FA, =1111 1010
+FF, = 1111 1111

111111 1001
F 9
Carry is discarded

Contd....

DCX rp (rp) € (rp) — 01
* The content of the register pair is decremented by one.
* The register pair can be BC, DE, HL or SP.

* No flags are affected.
* One byte instruction

* One machine cycle :
* Opcode fetch - 6T

e Register addressing

Example: DCXSP (SP) « (SP) - 01

The content of the stack pointer is decremented by one.

Before execution

After execution

SP
1000

SP
OFFF

 Total number of instructions = 4
DCXB DCXD DCXH DCXSP

Thank You

MPES

Module 1 9

BCD Numbers:

* Binary coded decimal
* Binary representation of decimal numbers 0 to 9 are called BCD.
* Unpacked and Packed BCD’s are there.

* In Unpacked BCD, lower 4 bits (lower nibble) of one byte represents BCD
number and rest of the bits are zero.

* In Packed BCD, a single byte has two BCD numbers in it. Lower 4 bits and
upper 4 bits. Eg. 0101 1001 is packed BCD for 59 decimal.

Binary Coded Decimal BCD
Numbers

Each decimal digit to be
represented in BCD is
converted info its 4 digit
binary equivalent.

As the decimal digits
relating to 1010, 1011,
1100, 1101, 1110, 1111 do

not exist these are invalid.

Decimal Binary BCD
0 0000 0000 0000 0000
1 0000 0001 0000 0001
2 0000 0010 0000 0010
3 0000 0011 0000 0011
4 0000 0100 0000 0100
5 0000 0101 0000 0101
5 0000 0110 0000 0110
7 0000 0111 0000 0111
8 0000 1000 0000 1000
9 0000 1001 0000 1001
10 0000 1010 0001 0000
11 0000 1011 0001 0001
12 0000 1100 0001 0010
13 0000 1101 0001 0011
14 0000 1110 0001 0100
15 0000 1111 0001 0101
16 0001 0000 0001 0110
17 0001 0001 0001 0111
18 0001 0010 0001 1000
19 0001 0011 0001 1001
20 0001 0100 0010 0000

10 ,=1010; = A ,is not a valid BCD number as BCD is from 0 to 9 only.
To convert it to valid BCD, add 06, to that.

1010 +
0110

10000 =10

DAA

(DAA - Decimal Adjust Accumulator)

After BCD addition, the DAA instruction is executed to get the result in BCD. When DAA instruction is
executed, the content of the accumulator is altered or adjusted as explained below :

i) If the sum of the lower nibbles exceeds 09H or auxiliary carry is set, then a correction
06H (0110) is added to sum of lower nibbles.
ii) If the sum of the upper nibbles exceeds 09H or carry is set, then a correction 06H (0110) is
added to sum of upper nibble.
After executing this instruction all flags are modified to indicate the status of the result.
One byte instruction

One machine cycle:
* Opcode fetch - 4T

Implied addressing
Total number of instructions =1

Eg. For BCD addition:
85+25=110 in actual BCD format.

But in binary, 1000 0101 +
00100101
1010 1010 is AA ,, which is not a valid BCD number.

To make the result in BCD, add 06 H to both upper and lower nibbles as they exceeds 09 decimal value.
Then,
1010 1010 +
01100110
1 0001 0000 = 110 which is the correct answer.
DAA instruction is used after the addition instruction.
Eg:
ORG 4000 H
MOV A, 85 4

MOV B, 25 H
ADD B

DAA

HLT

Thank You

Module 1 _10

Logical Instructions in 8085
ANA reg (A) €< (A) & (reg)

(& is the symbol used for logical AND operation)

* The content of the register is logically ANDed bit by bit with the content of the accumulator. In
bit by bit AND operation, the bit DO of register is ANDed with the bit DO of A-register, the bit D1

of register is ANDed with bit D1 of A-register, and so on.

* The register can be any one of the general purpose register A, B, C, D, E, H or L. After execution
of the instruction, carry flag is always reset and auxiliary carry flag is always set. Other flags are

altered (according to the results).

* One byte instruction

After AND operation, result is stored in accumulator.

* One machine cycle:
 Opcode fetch - 4T

Example :

ANA E

The content of E-register is logically ANDed bit by bif with the content of accumulator.

(A) « (A) & (E)

Register addressing

Before execution

AND operation

After execution

e Total number of instructions =7 A

E

E2

ANAA ANAB ANAC ANAD L
ANAE ANAH ANAL

CF
PF
AF
ZF
SF

momomo

cCooo o

15,= 0001 0101

E2,= 1110 0010
0000 0000
0 0

A

E

00

=

CF
PE
AF
ZF
SF

o momo

B = =k =t £}

ANI d8 (A) & (A) & d8

* The 8-bit data given in the instruction is logically ANDed bit by bit with the
content of the accumulator.

* The result is stored in the accumulator.
* After execution of this instruction, CF = 0 and AF = 1. Other flags are affected.
* Two byte instruction

* Two machine cycles :
* Opcode fetch - 4T
e Memory read - 3T

* Immediate addressing
* Total number of instructions =1

ANA M (A) €& (A) & (M) or

(A) € (A) & ((HL))

* The content of the memory addressed by the HL pair is logically ANDed bit by bit
with the content of the accumulator.

e The result is stored in the accumulator.

» After execution, CF = 0 and AF = 1. Other flags are affected .

* One byte instruction

 Two machine cycles:
* Opcode fetch - 4T
e Memory read - 3T

* Register indirect addressing

Example : ANA M

(A) « (A) & (M)

Let the content of HL be 105A . Let the content of the memory location 1054, be 4C,. The content of the memory location
1054, is logically ANDed bit by bit with the content of the accumulator. The result is stored in the sccumulafor

Before execution

AND operation

After execution

A HL Memory

27 1054

14

CF 0

il 4C

AF
ZF
SF

1] !] n ||

0
0
0
0

1059
105A

27, = 0010 0111

4C = 0100 1100

0000 0100

0 4

A HL Memory
105A 14 058

CF = 0 4C [N05A

PF = 0

AF = 1

ZF = 0

SF_= 0

 Total number of instructions =1

ORA reg (A) & (A) | (reg)

(| is the symbol used for logical OR operation)

* The content of the register is logically ORed bit by bit with the content of the accumulator. In
bit by bit OR operation, the bit DO of the register is ORed with bit DO of the A-register, the bit
D1 of the register is ORed with bit D1 of the A register, and so on.

* The register can be any one of the general purpose register A, B, C, D, E, H or L.

e After execution of the instruction, both the carry and auxiliary flags are always reset (AF =0,
CF = 0). Other flags are modified (according to the result).

After OR operation, the result is stored in the accumulator.

* One byte instruction

e One machine cycle: Eaampre.: ona B (A) < (A)| (B)

e Opcode fetch - 4T

The content of the E-reqister is logically ORed bit by bit with the content of the accumulator.

Regist dd . Before execution OR operation After execution
®* negister aaaressin
& & A B CF =0 04,, = 0000 0100 A B CF =0
 Total number of instructions = 7 04 || 7A EE = g 7A,= 0111 1010 7E| [7a | PF = 1
% AF = 0
ORAA ORAB ORAC ORAD 7F = 0 0111 1110 SE = 6
ORAE ORAH ORAL o * i 7 E SF = 0

ORA M (A) €< (A) | (M) or
* The content of the memory addressed by the HL pair is logically ORed bit by bit

with the content of the accumulator.
* The result is stored in the accumulator.

(A) € (A) | ((HL))

» After execution, CF = AF = 0. Other flags are affected .

* One byte instruction

 Two machine cycles:
* Opcode fetch - 4T
e Memory read - 3T

Example: ORAM

Let the content of the HL pair be 2050, Let the content of memory location 2050, be 18, The content of the memory
location 2050 is logically ORed bit by bit with the content of the accumulator. The resuft is siored in the accumulator.

(A) + (A) | (M)

Before execution OR operation After execution

A HL Memory 45 = 0100 0101 A HL Memory

45 | |2050 050
1B |29%0 | 18 = 0001 1011 oF | 1290} |18 {<

CF = 0 07 | 2051 0101 1111 EE = ? 07 | 2051

PF = 0 :

AF = 0 " F AP = 0

ZF = 0 ZF = 0

SF = 0 sk = 0

* Register indirect addressing
* Total number of instructions =1

Logical Instructions Contd....

ORI d8 (A) &< (A) | d8

* The 8-bit data given in the instruction is logically ORed bit by bit with the content
of the accumulator.

* The result is stored in the accumulator.
* After execution of this instruction, CF = AF = 0. Other flags are affected.
* Two byte instruction

 Two machine cycles :
* Opcode fetch - 4T
e Memory read - 3T

* Immediate addressing
e Total number of instructions =1

XRA reg (A) & (A) N (reg)

(A is the symbol used for logical EXCLUSIVE-OR operation).

* The content of the register is logically EXCLUSIVE-ORed bit by bit with the content of the
accumulator . In bit by bit EXCLUSIVE-OR operation, the bit DO of register is EXCLUSIVE-
ORed with bit DO of A-register, the bit D1 of register is EXCLUSIVORed with bit D1 of A-

register, and so on.

* The register can be any one of the general purpose register A, B, C, D, E, H or L.
e After execution AF = CF = 0. Other flags are modified (according to the result).

* The result is stored in the accumulator.

* One byte instruction Example : XRA A

(A)« (A) * (A)

The content of the A-register is EXCLUSIVE-ORed bit by bi with the content of the A-regisler itself.

* One machine cycle:
* Opcode fetch - 4T

Before execution

EXCLUSIVE-OR
operation

After execution

* Register addressing Py
* Total number of instructions = 7 ;i

Sk

— 3 -y] il

7, = 0111 0100

74 = 0111 0100

0000 0000

_F". . CF
(00| PF
AF
ZF
SF

in Hl I il n

0
1
0
1
0

XRAA XRAB XRAC XRAD XRAE XRAH XRAL

XRI d8 (A) < (A)~Ad8 or (A) <« (A)NdS8

* The 8-bit data given in the instruction is logically EXCLUSIVE-ORed bit by bit
with the content of the accumulator.

* The result is stored in the accumulator.
e After execution of this instruction, CF = AF = 0. Other flags are affected.
* Two byte instruction

* Two machine cycles :
e Opcode fetch - 4T
e Memory read - 3T

* Immediate addressing
e Total number of instructions =1

XRA M (A) & (A) A (M)

or (A) € (A)"((HL))

* The content of the memory addressed by the HL pair is logically EXCLUSIVE-ORed
bit by bit with the content of accumulator.

* The result is stored in accumulator.
e After execution, CF = AF = 0. Other flags are affected.

* One byte instruction

* Two machine cycles :
* Opcode fetch - 4T
* Memory read - 3T

e Register indirect addressing

Example: XRA M (A) « (A) * (M)

Let the content of the HL pair be 8054, Lef the content of memory location 8054, be C4 . The condent of the memory location
B05A. is bgically EXCLUSIVE-ORed bit by bit with the content of the accumulator. The resulf will be in the accumulator

Before execution EXCLUSIVE-OR After execution
operation
A HL Memoary A HL Memory
B7, = 1011 0111 73

T H BOSA
{i_J 8054 1C 8050 I 1C |8059
CE = 1 [C4 |apss | ©4w= 1100 0100 CF = 0 C4 |805A
PE = 1 20 |8s0s8 0111 0011 PF = 0 20 | 8058
AF = 1 51 |805C 7 3 AF = 0 51 |805C
ZF = 0 ZF = 0
SF = 1 SF = 0

 Total number of instructions =1

Thank you

MPES
Module 1l 11

Logical instructions in 8085 contd....
CMP reg (A) — (reg) = Modify flags

* The content of the register is compared with the accumulator. The comparison is performed by
subtracting the content of register from the A-register. The subtraction is performed in the ALU,
and the result is used to modify flags and then the result is discarded (i.e., it is not stored in any
registler). éfter execution of this instruction, the content of accumulator and the register are
not altered.

* All flags are affected by this instruction.
* The register can be any one of the general purpose register A, B, C, D, E, H or L.
* The status of carry and zero flag after comparison are given below :
i) If (A) <(reg) then the carry flag is set (i.e., CF = 1)
i) If (A) > (reg) then the carry flag is reset or cleared (i.e., CF = 0)
iii) If (A) = (reg) then the zero flag is set (i.e., ZF = 1)
One byte instruction

* One machine cycle:
* Opcode fetch - 4T

Register addressing
e Total number of instructions =7
CMPA CMPB CMPC CMPD CMPE CMPH CMPL

Contd....

Example: CMP B (A) = (B) = Modify flags.
The confent of the B-register is compared with the accumulator, The comparison is performed by subtracting the content
of the B-register from the content of the accumulator. The subfraction is performed in the ALU and the resulf is used fo
modify the flags and then discarded. The content of the accumulator and the B-register are not altered.
Before Comparison After
execution execution
A B C2,=1100 0010 A B
15| |C2 1'scomplement of C2,=0011 1101 15 C2
CE = 0 2'scomplementofC2 ,=0011 1101+1 CE = 1
PEF = 0 =0011 1110 =3k, PE = 1
b = o 15, =0001 0101 ;E 5 ;
SE = 0 +3E, = 0011 1110 SE = 0
[0]0101 0011
Complement
Carry) 3

CPI d8 (A) — d8 = Modify flags.

* The 8-bit data given in the instruction is compared with the accumulator. The
comparison is performed by subtracting the 8-bit data from the A-register. The
subtraction is performed in ALU and the result is used to modify flags and then
dliscargled. After execution of the instruction, the content of the accumulator is not
altered.

 All flags are affected.

* The status of carry and zero flag after comparision are given below :
i) If (A) <d8 then the carry flag is set (i.e., CF = 1)
ii) If (A) > d8 then the carry flag is reset or cleared (i.e., CF = 0)
iii) If (A) = d8 then the zero flag is set (i.e., ZF = 1).

* Two byte instruction

* Two machine cycles :
* Opcode fetch - 4T
e Memory read - 3T

* Immediate addressing
e Total number of instructions =1

CMP M (A) = (M) = Modify flags or (A) — ((HL)) = Modify flags.

* The content of the memory addressed by HL pair is compared with the accumulator.
The comparison is performed by subtracting the content of memory from the A-register.
The subtraction is performed in the ALU and the result is used to modify flags and then
discarded. After execution of the instruction, the content of the accumulator and the
memory are not altered.

* All flags are affected by this instruction.

* The status of carry and zero flag after comparison are given below:
i) If (A) < (M) then the carry flag is set (i.e., CF = 1).
ii) If (A) > (M) then the carry flag is reset or cleared (i.e., CF = 0).
iii) If (A) = (M) then the zero flag is set (i.e., ZF = 1).

* One byte instruction

* Two machine cycles:
* Opcode fetch - 4T
* Memory read - 3T

* Register indirect addressing
* Total number of instructions =1

Contd....

Example: CMP M

Let the content of the HL pair be C0S0,. Let the content of the memary location C050, be 7A . The content of the memary
location C050, is compared with the content of the accumulator. Only fiags are alfered. The content of the accumulaior
and the memory remains the same.

Before After
execution Compariscn execution
A HL 25,,= 0010 0101 A HL

[25] [coso 7A, = 0111 1010 [25] [com]
lu_hm 1'complement of 7A_= 10000101 Memaory

7A | CO50 2'complementof 7A, = 10000101 +1 7A| CO50
10 | CO51 = 10000110 =86 10 | CO51
CF = 0 25_= 0010 0101 CF = 1
PF = 0 +86, = 1000 0110 PF = 0
AF = 0 AF = 0
ZF = 0 [pJ1010 1011 2F = 0

= Caomglement
SF 0 =] as SF & 4

CMA (A) € (A)

(CMA - Complement Accumulator)

The content of the accumulator is complemented.
No flags are affected.

One byte Instruction

One machine cycle:
* Opcode fetch - 4T

Implied addressing

STC (CF) €« 1

(STC - Set Carry)

The carry flag is set to 1.

Only carry flag is affected by this instruction.
One byte instruction

One machine cycle :
* Opcode fetch - 4T

Implied addressing

CMC (CF) ¢ (CF)
* (CMC - Complement Carry)

-

One byte instruction

One machine cycle:
* Opcode fetch - 4T

Implied addressing
RLC Dn+1<Dn;
* (RLC - Rotate Accumulator Left to carry)

The carry flag is complemented. Only the carry flag is affected by this instruction.

DO ¢« D7 and (CF) ¢ D7

* The content of the A-register is rotated left by one bit and the left most bit of A-register is rotated to the carry.

[The left most bit is most significant bit.]
* Only the carry flag is affected.
* One byte instruction

* One machine cycle:
* Opcode fetch - 4T

* Implied addressing

Example : RLC
Before execution Rotation After execution
CF A CF CF A
Dl|oJ1|t|O|O] Y
1 32 I Muuuu_.f 0 B4
A CF b A
D, 0, 5,0, |0,|0,1D, 10 ollol1l11lolol1l0]la0 D, |0, |0, |0, |0, |0, D, I,

Logical instructions contd....
RRC Dn €& Dn+1;

register is rotated to carry. [The right most bit is least significant bit.]
* Only carry flag is affected.

* One byte instruction

* One machine cycle:
* Opcode fetch - 4T

* Implied addressing

D7 & DO and (CF) < DO
* (RRC - Rotate Accumulator Right to Carry)
* The content of A-register is rotated right by one bit and the right most bit of A-

Example : RRC
Before execution Rotation After execution
CF A CF A
1 32 L 0 19
A CF v A
pfojofofoleofo] | [o]loJoTo 1]t JoTo r]{[o[ooRfBsRafpifos

RAR Dn €& Dn+1; D7 < (CF) and (CF) < DO
* (RAR - Rotate Accumulator Right through carry)

* The content of the A-register along with the carry is rotated right by one bit. Here
the carry is moved to the most significant bit position (D7) and the least
significant bit (DO) is moved to the carry.

* Only the carry flag is affected.

o . . Example : RAR
One byte |nStrUCt|On Before execution Rotation After execution
* One machine cycle: LN " = -
1 32 0 9
* Opcode fetch - 4T Jofoleltlelulils]
. . A U A
* Implied addressing STl FBFP, | ST — - |FFFPEERE

RAL Dn +1 ¢ Dn; DO < (CF) and (CF) ¢ D7
* (RAL - Rotate Accumulator Left through carry)

* The content of the A-register along with the carry is rotated left by one bit. Here
the carry is moved to the least significant bit position (DO) and the most
significant bit (D7) is moved to the carry.

* Only the carry flag is affected. | exampie: ra
b .] Before execution Rotation After execution
([J
One byte instruction = . = :
. ~ CF
* One machine cycle: HERE et T Ta Ta 1| B2 65
L L S S S S, S S
Opcode fetch - 4T 2 .) :
* Implied addressing 0,0, o, o [Bs[e.fo, 0| (G T 7 Jo Jo [1 Jo [+ | [fafefelelelole.
6 5

Thank You

MPES
Module 1_12

Branching Instructions in 8085:

* The control transfer instructions include Unconditional Branch, Jump and Jump-to-
subroutine. The Branch instruction uses relative addressing while the Jump instruction
uses direct or indirect addressing.

e Sub routine is a program other than the main program which executes a specific task,
which can be used in main programs wherever that particular task should be
performed by the help of Branching instructions or interrupts.

JMP addr16 (PC) € addrl6

* |t is unconditional jump instruction. When this instruction is executed, the address
given in the instruction is moved to the program counter. Now, the processor starts
executing the instructions stored from this address.

* Three byte instruction

* Three machine cycles:
e Opcode fetch-4T
e Memoryread-3T
* Memoryread-3T

* Immediate addressing

J <condition> addr16
* If <condition> is TRUE then, (PC) & addrl6

* |t is conditional jump instruction. The conditional jump instruction will check a flag condition. If the flag
condition is true, then the address given in the instruction is moved to the program counter. Thus the
program control is branched to the jump address. If the flag condition is false, then the next instruction
is executed.

* There are eight conditional jump instructions.

* JZ addrl6; Jump on Zero - Jump if zero flag = 1.

 JNZ addri6; Jump on Not Zero - Jump if zero flag = 0.

 JCaddrl6; Jump on Carry - Jump if carry flag = 1.

 JNC addrl6; Jump on No Carry - Jump if carry flag = 0.

 JM addrl6; Jump on Minus - Jump if sign flag = 1.

* JP addrl6; Jump on Positive - Jump if sign flag = 0. Condition False Condition True

* JPE addrl6; Jump on Parity Even - Jump if parity flag = 1. Opcode feich - 4T Opcode fetch - 4T
 JPO addrl6; Jump on Parity Odd - Jump if parity flag = 0.

Memory read - 3T Memory read - 3T

* Three byte instruction
y Memory read - 3T

T 107

* Two or three machine cycles:

v

CALL addri16 (SP) & (SP)-1; ((SP)) <« (PC)H
(SP) €< (SP) -1 ; ((SP)) ¢« (PC)L
(PC) €& addrl6

* |t is unconditional CALL used to call a subroutine program. When this instruction is
executed, the address of the next instruction in the program counter is pushed to the
stack. The 16-bit address (which is the address of the subroutine program) given in the
instruction is loaded in the program counter. Now, the processor will start executing the
instructions stored in this call address .

* Three byte instruction

* Five machine cycles:
Opcode fetch - 6T
e Memory read - 3T
e Memory read - 3T

Memory write - 3T
Memory write - 3T

* Immediate addressing

C<condition> addr16

 |f <condition>is TRUE then,

(SP) & (SP)—1; ((SP)) ¢ (PC)H
(SP) & (SP)—1; ((SP)) < (PC)L
(PC) & addrl6

It is conditional subroutine call instruction. The conditional CALL instruction will check for a fIaE
condition. If the flag condition is true, then the address of the next instruction is pushed to the stac
and the call address (address given in the instruction) is loaded in the program counter. Now, the
processor will start executing the instructions stored in this address. If the flag condition is false, then
the next instruction is executed.

There are eight conditional CALL instructions. These are:
CZ addrl6; Call on Zero - Call if zero flag = 1.

CNZ addr16; Call on Not Zero - Call if zero flag = 0. Two or five machine cycles: Condition False Condition True

* CC addrl6; Call on Carry - Call if carry flag = 1. Opcoge fefch - 6T Opcode fetch - 67

* CNC addrl6; Callon N9 Carry - Ca_all if carry flag = 0. Memoryread - T Memaryread - 3T

e CM addrl6; Call on Minus - Call if sign flag = 1. i

« CP addrl6; Call on Positive - Call if sign flag = 0. 9 Memoryread - JT

 CPE addrl6; Call on Parity Even - Call if parity flag = 1. Memory wite - 3T

. CPC? addrl6 ; C.aII on Parity Odd - Call if parity flag = 0. Vemoywls -
Immediate addressing o

Three byte instruction

RET (PC)L € ((SP)); (SP) ¢« (SP) +1
(PC)H & ((SP)) ; (SP) €< (SP) +1
* (RET - Return to the main program)

* |t is an unconditional return instruction. This instruction is placed at the end of the
subroutine program, in order to return to the main program. When this instruction is
executed, the top of the stack is poped to (loaded in) the program counter .

Note : While calling the subroutine using CALL instruction, the return address of the main program is pushed
to the stack. The return istruction, (RET) pops that to the program counter. Thus the processor resumes the execution of
MALR progra m.

* One byte instruction

* Three machine cycles:
* Opcodefetch-4T
* Memoryread-3T
* Memoryread-3T

Register indirect addressing

R<condition>
* |If <condition>is TRUE then,
(PC)L & ((SP)); (SP) &« (SP) +1
(PC)H < ((SP)) ; (SP) <« (SP) + 1
It is conditional return instruction.

* In a conditional return instruction a flag condition is tested. If the flag condition is true, then
the program control return to main program by poping the top of the stack to the program
counter. If the flag condition is false, then the next instruction is executed.

* There are eight conditional return instructions:

* RZ; Return on Zero - Return if zero flag = 1.

* RNZ; Return on Not Zero - Return if zero flag = 0.

* RC; Return on Carry - Return if carry flag = 1.

* RNC; Return on No Carry - Return if carry flag = 0.

* RM; Return on Minus - Return if sign flag = 1.

* RP; Return on Positive - Return if sign flag = 0.

* RPE; Return on Parity Even - Return if parity flag = 1. One or three machine cycles: Condition False Condition True
* RPO; Return on Parity Odd - Return if parity flag = 0.

Opoode falch - 67 COpcode fefch - 6f
Memoryread - JT
Memoryread - T

* One byte instruction
Register indirect addressing

RST n

* |tis a restart instruction. The restart instructions are also called software interrupts.
Each restart instruction has a vector address. The vector address is fixed by the
manufacturer (INTEL).

 When a restart instruction is executed, the content of the program counter is pushed to
the stack and the vector address is loaded in the program counter. The vector address is
internally generated (computed) by the processor. The vector address for RST n is
obtained by multiplying n by 8. Thus the program control is branched to a subroutine
program stored in this vector address.

. . Restart Vect c tation of

* One byte instruction siraction liliss oo adlinss
. . . . 000 Ox8= 0 = 0
* Register indirect addressing ok s e o
* Three machine cycles: s e, el R
RST3 0018, Ix8= 24 = 1§,
* Opcode fetc.h -6T v ik b M0 =0,
* Memory write -3 T RSTS 0028, 5:8= 40, = 28,
° Memory write-3T RST6 0030, G«8= 48, = 30,
RST7 0lGE, f=8= dby = X,

* There are eight restart instructions.
RSTO RST1 RST2 RST3 RST4 RST5 RST6 RST7

PCHL (PC) < (HL)

* The content of the HL register pair is moved to the program counter. Since this
instruction alters the content of the program counter, the program control is
transferred to a new address. This instruction is used by the system designer to
implement the system subroutine to execute a program.

* One byte instruction

* One machine cycle:
* Opcode fetch - 6T

* Implied addressing

Thank You

MPES
Module 1 13

Machine control Instructions in 8085:

DI

e (DI - Disable Interrupts)

* When this instruction is executed, all the interrupts except TRAP are disabled. [When the
interrupts are disabled the processor will not accept or recognize the interrupt request made
by the external devices through the interrupt pins.]

* When the Processor is doing an emergency work, it can execute Dl instruction to prevent the
interrupts from interrupting the processor.

* One byte instruction

* One machine cycle:
* Opcode fetch - 4T

El

e (El - Enable Interrupts)

* This instruction is used (or executed) to allow the interrupts after disabling. (The interrupts
except TRAP are disabled after processor reset or after execution of DI instruction. When we
want to allow the interrupts, we have to execute El instructions.)

* One byte instruction

* One machine cycle:
* Opcode fetch - 4T

SIM
e (SIM - Set Interrupt Mask)

* The SIM instruction is used to mask the hardware interrupts RST 7.5, RST 6.5 and RST 5.5. It is also used to send data throuEh
the SOD line. (SOD: Serial Output Data pin of the 8085 processor.) The execution of SIM instruction uses the content of the

accumulator to perform the following functions:

* i) Program the interrupt mask for the hardware interrupts RST 5.5, RST 6.5 and RST 7.5.

* ii) Reset the edge-triggered RST 7.5 input latch.
* jii) Load the SOD output latch.

* One byte Instruction

* One machine cycle:
* Opcode fetch - 4T

[If the mask set enable bit is set to "1" then the interrupt mask bits
for RST 7.5, RST 6.5 and RST 5.5 (DO, D1 and D2) are recognized
and if itis "0" then these bits are not recognized by the processor.
The interrupt mask bits DO, D1 and D2 can be independently set
to "1" to mask the particular interrupt and reset to "0" to unmask
the particular interrupt. If the bit D4 isset to "1", then an internal
flip-flop is reset to "0" in order to disable the RST 7.5 interrupt.

If the serial output enable is "1", the serial output data is sent to

the SOD pin.]

Example program:

El ; Enable all interrupts of 8085
MVI A,0BH ; Move OBH to A-register

SIM ; Mask 6.5 and 5.5, Enable 7.5

p; | B | B; |B| By | D | Dy B

1 i

1 L 1 F 1 1
Senal Output [L:itﬂj T—]ntr:rru|:nt Mask

for RST 5.5

Senal Output Enable . Interrupt Mask

for RST 6.5
Undefined Interrupt Mask
forRST 7.5
Reset RST 7.5
Mask 5et Enable
Fig. : Accumulator content before execution of SIM instruction.

RIM

* (RIM - Read Interrupt Mask)

* The RIM instruction is used to check whether an interrupt is masked or not. It is also used to read data from the
SID line. (SID: Serial Input Data pin of 8085 processor).

* When a RIM instruction is executed, the accumulator is loaded with 8-bit data. The 8-bit data in the accumulator
(content of accumulator) can be interpreted as shown in Fig.

e Bits DO, D1 and D2 provide the mask status of the RST 5.5, RST 6.5 and RST 7.5 interrupts respectively. If the mask
bit corresponding to a particular RST is "1", then the interrupt is masked and if the mask bit is "0" then the
interrupt is unmasked.

* If the interrupt enable bit (D3) is "0", the 8085's maskable interrupts are disabled. The interrupts are enabled if

this bitis "1".
[A"1" in a particular interrupt pending bit indicates that an
D, { D, u.l D, \ D, J D, { D, | D, |
interrupt is being requested on the identified RST line. ECU TR TR OIS TN TR [:
When this bit is "0", no interrupt is waiting to be serviced. o e e a
The serial input data (bit D7) indicate the value of the signal ki PR - | _ _Tiesigh Nk
, Flag for RST 7.5 for RST 6.5

at the SID pin.] = l [

. . Interrupt Pending Interrupt Mask
* One byte instruction Flag for RST 6,5 forRST 15
* One machine CyCIGI Interrupt Pending Interrupt Enable Flag

e Opcode fetch - 4T FREE N 0 Fig. : Accumulator.

HLT

e (HLT - Halt program Execution)

* This instruction is placed at the end of the program. When this instruction is executed,
the processor suspends program execution and bus will be in idle state.

* One byte instruction

* Two machine cycle:
* Opcode fetch - 3T
 Busidle-2T

NOP
* (NOP - No operation)

* The NOP is a dummy instruction, it neither achieves any result nor affects any CPU
registers. This is an useful instruction for producing software delay and reserve memory
spaces for future software modifications.

* One byte instruction

* One machine cycle :
* Opcode fetch - 4T

Thank You

MPES

Module 1_14

Timing Diagram of 8085 Instructions:

* The execution of an instruction is the execution of the machine cycles
of that instruction in a predefined order.

Therefore, from the knowledge of the timing diagrams of machine
cycles, the timing diagram of an instruction can be obtained.

Machine cycles of an instruction

l |
!
Machine cycles to fetch instruction Additional machine cycles for external
bytes from memory. read/write with memory/l10 in order to
One-byte instruction :© Opecodefetch complete instruction execution. These machme
Two-byte instruction : Opcodefetch cycles depend on instruction execution logic.
+ memory read

Three-byte instruction : Opeode fetch
+ memaory read
+ memory read

Example: STA 1250H etc....

The sequence of operations that a processor
has to carry out while executing an
instruction is called Instruction cycle.

Each instruction cycle of a processor in turn
consists of a number of machine cycles.

The time required to access the memory or
input/output devices is called Machine cycle.

To execute an instruction, the processor will
run one or more machine cycles in a
particular order.

The seven Machine Cycle in 8085
Microprocessor are :

Opcode Fetch Cycle
Memory Read
Memory Write

1/0 Read

/O Write

Interrupt Acknowledge
Bus Idle

T-State:
The T-state is the time period of the internal
clock signal of the processor.

Abk- Al

LS|
L.ateh

kD

. {_
“_..

i kh

EFROM

17512

s

+

: Example of implementing 64 kb EPROM in the B0B5 system

TABLE -

BUS STATUS SIGNALS

oM 5

Crperation performed by B85

1]
1]
i
1
1]
1

Memory wrile
Mermory read
10 werite
2 read
Opoode falch

Intermupt acknowledge

Timing Diagram of Opcode Fetch Machine Cycle in 8085:

Each instruction of the processor has one-byte opcode. The opcodes
are stored in memory.

The opcode fetch machine cycle is executed by the processor to fetch
the opcode from memory.

Hence, every instruction starts with opcode fetch machine cycle.

The time taken by the processor to execute the opcode fetch cycle is
either 4T or 6T. In this time, the first 3T states are used for fetching
the opcode from memory and the remaining T states are used for
internal operations by the processor.

Contd...

At the falling edge of first T-state (T1), the
microprocessor outputs the low byte address on
ADO -AD7 lines and high byte address on A8 to A15
lines. ALE is asserted high to enable the external
address latch. The other control signals are asserted
as follows.

|I0/M=0,S0=1,S1=1.(I0/M is asserted low to
indicate memory access.)

At the middle of T1, the ALE is asserted low and
this enables the external address latch to take low
byte of the address and keep on its output lines.

In the second T-state (T2), the memory is requested
for read by asserting read line low. When read is
asserted low, the memory is enabled for placing the
opcode on the data bus. The time allowed for
memory to output the opcode is the time during
which read remains low.

In the third T-state (T3), the read signal is asserted
high. On the rising edge of read signal, the opcode is
latched into microprocessor. Other control signals
remain in the same state until the next machine
cycle.

The fourth T-state (T4) is used by the processor for
internal operations to decode the instruction and
encode into various machine cycles, and also for
completing the task specified by 1-byte instruction.
During this state (T4) the address and data bus will
be in hich impedance state.

o TI ol
CLK 4_/—
AD - A | Low byje Opdode from, |
P |\ addres eIy

| High byie
Ay = A :>< address

RD

IOVM, S, §

(WR will be high ; READY is tied high erther
permanently or temporanly in the system.)

Fig. : Opcode fetch machine cycle of 8085,

Timing Diagram for Memory read cycle in 8085:

The memory read machine cycle is executed by
the processor to read a data byte from memory.

The processor takes 3T states to execute this cycle. _/—_/7

At the falling edge of T1, the microprocessor
outputs the low byte address on ADO - AD7 lines E>_ { Deta from
and high byte address on A8 to A15 lines. b

ALE is asserted high to enable the external
address latch. X High byte

The other control signals are asserted as follows. Sddvies
10/M=0, SO =0, S1 = 1. (I0/M is asserted low to

indicate memory access.) /_\

At the middle of T1, the ALE is asserted low and
this enables the external address latch to take low
byte of address and keep on its output lines.

In the second T-state (T2), the memory is
requested for read by asserting read line low. IOM, S,. 5, ><[wﬁ=ﬂ 5, =10
When read is asserted low, the memory is
enabled for placing the data on the data bus. The
time allowed for memory to output the data is (WR will be high ;: READY is tied high either
the time during which read remains low. permanently or temporarily in the system.)

At the end of T3, the read signal is asserted high. : Memory read machine cycle of 8085.
On the rising edge of read signal, the data is

latched into microprocessor. Other control signals
remain in the same state until the next machine
cycle.

e— T, —sle— T, —f

ITRCTTIAY

Timing Diagram for Memory write Cycle in 8085

The memory write machine cycle is executed by the
processor to write a data byte in a memory location.

The processor takes 3T states to execute this
machine cycle.

At the falling edge of T1, the microprocessor outputs
the low byte address on ADO - AD7 lines and high
byte address on A8 to A15 lines.

ALE is asserted high to enable the external address
latch. The other control signals are asserted as
follows. 10/M=0, S0 =1, S1 =0. (I0/M is asserted low
to indicate memory access.)

At the middle of T1, the ALE is asserted low and this
enables the external address latch for latching the
low byte address into its output lines.

In the falling edge of T2, the processor output data
on ADO to AD7 lines and then request memory for
write operation by asserting the write control signal
WR to low.

At the end of T3, the processor asserts WR high. This
enables the memory to latch the data into it. The
memory should prepare itself to accept the data
within the time duration in which write control signal
remains low. Other control signals remain in the
same state until the next machine cycle.

i— T, —afe— 1, —d

TN\

. Low byie Jata from
Allly=A0y X addres } {rrm'rurrw.':bw

High byvte

A - Ag
address

X
ALE —/_\

WR

IO, S, 5,)@ Wl = o

JEII-J will be high ; READY is tied high either
permanently or temporarily in the system.)

Memory write machine cycle of 8085.

Thank You

MPES
Module 1 15

Thank You

Assembly Language programs in 8085:

Addition of numbers in an array of three numbers (Assume 16 bit Result)

Address | Hex Code | Label Mnemonics Comments
6000 OE MVI C, 03H; Load register C with 03H
6001 01
6002 6 MVI B, 00H; Load register B with 00H
6003 6100 80H
6101 80H
6004 21 LXI H, 6100 H; Initialise memory pointer to 6100
6005 0 6102 02H
6006 61
6007 AF XRA A; Clear Accumulator
6008 86 RPT [(ADD M; [Add contents of accumulator with contents in memory
6009 D2 UNC NEXT; Jump to NEXT if carry is not set
600A oD
600B 60
600C 3 INR B; Increment B for getting the higher byte of result
600D 23 NEXT |INX H; Increment M, Memory location pointed by HL pair
600E 0 DCR C; Decrement C for the counter operation.
600F c2 UNZ RPT; Jump to RPT if register [C]=0
6010 8
6011 60
6012 6F MOV L, A; Move contents of Ato L
6013 60 MOV H, B; Move contents of B to H
Program to arrange the numbers in an array. [Ascending / Descending Order]
Address | Hex Code Label Mnemonics Comments
6000 OE MVI C, 04 H; C is initialised as a counter 1 to count the iterations
6001 9
6002 41 LOOP1 (MOV B,C; B is initialised as counter 2 to count the no of comparisons in each iteration
6003 21 LXI H, 6100 H; Memory Pointer initialised
6004 0
6005 61
6006 7E LOOP2 (MOV A, M; First number moved to accumulator.
6007 63 INX H; Memory Pointer incremented
6008 56 MOV D, M; Next number in array is moved to register D
6009 BA CMP D; Numbers are compared.
600A DA/ D2 UC / INC NEXT; Go to the next comparison if [A] < [D] for ascending order
600B 11
600C 60
600D 77 MOV M, A; Otherwise exchange the numbers.
600E 2B DCX H; Memory pointer Decremented
600F 72 MOV M, D; Move [D] to memory
6010 63 INX H; M. y pointer increr d
6011 5 NEXT [DCR B; Counter 2 decremented and then repeat the process
6012 c2 UNZ LOOP 2; Jump to LOOP 2 if [B] not equal to zero.
6013 6
6014 60
6015 oD DCR C; Decrement counter 1 and repeat the process
6016 c2 UNZ LOOP 1; Jump to LOOP 1 if [C] not equal to zero.
6017 2
AN18 a0

Example for Ascending order sorting:

First Iteratiocn [C =4) (B =4)

Original
Array |Addressz| B=3 B=2 B=1 B=0
5 [T E] 5 5 El
£ ELOL s 3 3 3
E] B0] 7 7 7
& G103 [[] 1
1 [1 7 1 B
Second iteration € = 3] | B=3]
B =2 B=1 B =D
e100 E] 2 E]
[S T 5 5 5
102 T T f
[SE] 1 1 T
[T [-] []]
Thard feration (€ =) | B=a]
B=1 B=0
100 E] 3
[T] 1
E1O2 1 5
[k 7 7
[G] & &
Fourth eration [C = 1) | 8= 1]
B =D
&100 1
B0 E]
ELO2 5
&1n3 Fa
[T]

MPES
Module 1 16

Program to Convert a Binary number to BCD number

Address Hex Code Label Mnemonics Comments
6000 06 MVI B, 00 H; Clear Register B to store the hundreds
6001 0
6002 48 MOV (, B; Clear Register C to store tens
6003 3A LDA 6200 H; The number to be converted is loaded to A
6004 0
6005 62
6006 FE HUN CPl 64 H; If the number > 100 (64 H), find the number of hundreds in the number
6007 64
6008 DA JC TEN; Jump to TEN if carry is generated Bina ry BCD Nu mber
0009 - Eg: |8OH 128 [100*1 + 10 *2 + 1* 8]
600A 60
600B D6 SUl 64H; Division by hundred
600C 64
600D 4 INR B; Increment register B
600E c3 JMP HUN; Jump to HUN
600F 6
6010 60
6011 FE TEN CPI OA H; If number > 10 (OA H), Find the number of tens in the number
6012 0A
6013 DA JC UNIT; Jump to unit if carry
6014 1C
6015 60
6016 D6 SUI OA H; Division by ten
6017 0A
6018 oc INR C; Increment the content of register C
6019 c3 JMP TEN; Jump to TEN
601A 11
601B 60
601C 57 UNIT MOV D, A; unit is saved in register D
601D 60 MOV H, B; Hundreds is moved to register H
601E 79 MOV A, C; Tens value stored to A
601F 7 RLC;
6020 7 RLC;
6021 7 RLC;
6022 7 RLC;
6023 82 ADD D; Add the units value to tens value in A
6024 6F MOV L, A; Move the content of accumulator to L
6025 76 HLT; Program Halted , now the result , ie, BCD number in [HL]

Program to Convert a BCD to Binary number

Address Hex Code Label Mnemonics Comments

6000 21 LXI H, 6200 H; Memory pointer initialised BCD BCDQ BCD-l

6001 0

6002 62 28 2 E

6003 7E MOV A, M; Content in memory location pointed is moved to A 00101000 (00200000 (0000 1000 Separated BCD1and BCDZ

6004 47 MOV B, A; Move the number to register B 0000 0010 RDTEtEd BCD? fﬂl’ﬂ-tifﬂEE

:::: ZG e o eparate BEDTand oD, Mook Mgher ™l 00010100 Added A H to cleared [A] for two times{BCD2after rotation) here,
i

o7 e oV A 500 115 saved I regiotor 00011100 (1CH) |Binary of 28 , ie result after adding BCDL to [A]

6008 78 MOV A, B; Original BCD number is moved to A

6009 E6 ANI FO H; Mask Lower nibble of BCD number

600A FO

600B OF RRC;

s00¢ oF RRG; Rotate four times to right to get BCD 2

600D OF RRC;

600E OF RRC;

600F 57 MOV D, A; Save BCD 2 to register D

6010 AF XRA A; Clear Accumulator

6011 1E MVI E, 0A; BCD2 X 10 as it comes at tenth place.

6012 0A

6013 83 LOOP ADD E; Add [E] to [A]

6014 15 DCR D; Decrement D register

6015 (o] INZ LOOP; Jump to LOOP if [D] not equal to zero

6016 13

6017 60

6018 81 ADD C; (BCD2 x 10) + BCD1

6019 76 HLT; Program Halted , now the result, ie, Binary number in [A]

Thank You

MPES
Module 1 17

Timing Diagram of 8085 Instructions (contd...):

* The execution of an instruction is the execution of the machine cycles of that
instruction in a predefined order.

* Therefore, from the knowledge of the timing diagrams of machine cycles, the
timing diagram of an instruction can be obtained.

Machine cycles of an instruction
l

! !

Machine cycles to feich instruction Additional machine cycles for external

bytes from memory. read/write with memory/10 in order to
One-byte instruction © Opcode fetch complete instruction execution. These machine
Two-byte instruction : Opcodefetch cycles depend on instruction execution logic.

+ memory read

Three-byte instruction : Opcodefetch
+ memory read
+ memory read

Example: STA 526AH, PUSH B etc....

Timing Diagram of MOV Rd, M

* Though its a one byte instruction, it requires two machine cycles for

execution. (Eg. for a special case) - —
- Opcode fetch | oerEhoniE | MmN On
* Memory Read ' 1 1 1 t t 1

Here in the given timing diagram, we have

considered MOV E, M;

[Suppose the instruction is stored in memory
location 2008 H and E register content is DB H, A07400 |) e : 3 Trerree s 2o (50 Low-Order : 10 AA
H register content is 40H, and L register content - Ny

is 50H.Let us say location 4050H has the data

value AAH. When the 8085 executes this

instruction, the contents of E register will change

to AAH, as shown below.]

Befare
(E}
(HL)

(4050H)

Tlmmg Diagram for STA 526A H;

Let the Content Of the accumU|at0r | Opcode Fetch o .".-‘[-;':I]'.I-I..'II}' Read e . Memory Rﬂj_ 3 Memory Write .
be C7H and it is desired to store the L) L)% | & % % L) & | T|T|T|T

content of the accumulator to a {LK__/“_/—_/—_/__/__/__/__/_U_/__;F_/_‘_/_

memory location 526AH. I |
- The STA addr16 instructionisa - Xer) {2 = L2 -t) Lo (e Lo K e

e

three byte instruction. The first byte = T . =

is the opcode of the instruction 32H. , _,.}(

The second byte is low byte address

6AH and the third byte is high byte ,xu-_-—ﬂ / \ / \
address 52H. g

RD
*Let the three bytes of the |/ Ll / |/

instructions be stored in memory = _
locations 41FFH, 4200H and 4201H. \ |/

IOWM, S 3, ;l: 0,11 X 0,01 X 0,01 X 01,0

Fig. : Timing diagram of STA 526AH instruction.

Thank You

MPES
Module 1 18

subroutines in 8085:
e Delay routines are the subroutines used for maintaining the timings of various operations

INn @ microprocessor.

e As an example, In control applications, certain equipment need to be ON/OFF after a
specified time delay. In some applications, a certain operation has to be repeated after a
specified time interval.

* A delay routine is generally written as a subroutine (It need not be a subroutine always. It
can even be a part of the main program.) In a delay routine a count (hnumber) is loaded in
a register of microprocessor. Then it is decremented by one and the zero flag is checked to
verify whether the content of register is zero or not. This process is continued until the
content of the register is zero. When it is zero the time delay is over and the control is
transferred to the main program to carry out the desired operation.

* The delay time is given by the total time taken to execute the delay routine. It can be
computed by multiplying the total number of T states required to execute the subroutine
and the time for one T-state of the processor. The total of number of T states can be
computed from the knowledge of T states required for each instruction.

* The time for one T-state of the processor is given by the inverse of the internal
clock frequency of the processor.

* For example, if the 8085 microprocessor has 5 MHz quartz crystal then,

2
I'he intemal clock frequency =—=2.5 MHz

]
Iime for one T-state === (.4 msec

= - [
Sx 10

* For small time delays (< 0.5 millisecond) an 8-bit register can be used as counter,
but for large time delays (< 0.5 second) 16-bit register should be used as
counter. For very large time delays (>0.5 second), a delay routine can be
repeatedly called in the main program. The disadvantage in delay routines is

that the processor time is wasted.

* An alternate solution is to use a dedicated timer like 8253/8254 to produce
time delays or to maintain timings of various operations.

EXAMPLE DELAY ROUTINE -1

Write a delay routine to produce a time delay of 0.5 millisecond in 8085 procesor-based system whose clock source is
6 MH: quart: crystal

Solution

The delay required is 0.5 millisecond, hence an 8-bit register of 8085 can be used to store a count
value, The count 18 decremented by one and the zero flag s venfied. If zero flag 1s set then decrement

operation 1§ terminated. The delay routine s wntien as a subroutine as shown below:
Delay routine

WI DN ; Load the count value, N in D-register.

LOOP: DCR D : Decrement the count.
INZ LoOP ; If count is not zero go to LOOP.

RET ; If count is zero return to main program.

T-state roquired Number of times
I nstruction for execution of the instruction Total T states
an instructon B executed
CALL addrl6 I8 1 18x | = |8
MVIDN T | =1 = 7
DCRD 4 N tmes dxN = 4N
INZ LOOP 10 (N=1) times 10x(N=1) = |ON-10
a 7 I Txl =7
RET 10 1 10x 1 = |0
Total Tstate required for subroutine = J4N+32

Calculation to find the count value, N

External Clock frequency = 6 MHz

Intemal Clock frequency = ' ===3 MHz

| 1
internal Clock ﬁ'nqmnn}' ix10°

Number of T states anlmdumcd:hjr asx10”
required for 0.5 ms " Time forone T-state 03333 107

Time period of one T-state = —=()3333 us

= 150015= 1504,

On equating the total T states required for the subroutine and the number of T states for the
required time delay, the count value, N can be calculated.

14N +32 = 1500,,

N = 1500-32
14

. Count value, N=69,,

= 104.857 , = 105,, =69,

If the above delay routme is called by a program and executed with count value of 69, then
the delay produced will be 0.5 millisecond.

EXAMPLE DELAY ROUTINE - 2

Write a delay routine to produce a time delay of 0.5 second in 8085 processor-based system whose internal dock
frequency is 3 MHz.

Solution

The delay required is large, hence a 16-bit register can be used for storing the count value. The
count is decremented one by one until it is zero. After each decrement operation we have to verify whether
the content of register pair 18 zero or not. This can be performed by logically ORing the content of low
order and high order register and then checking the zero flag. (Because the 16-bit increment/decrement

instruction will not modify any flag.) The delay routine s written as a subroutine as shown below

Delay Routine
IXI D,N ; Load the count value, N in DE=register pair.
LOOP: DOX D ; Decrement the count.
MOV A.E ; Logically OR the content of
ORA D ; E=register with D=register.
INZ LoOP ; If count i1s not zero, Qo to LOOP.
RET : If count is zero, return to main program.

Calculation to find the count value, N

Intemal Clock frequency =3 MHz

| 1
"~ Intemal Clock frequency 3 x 10°

Time penod of one T-state =0.3333 ps

Number of Tstates required | _ Required tme delay _ 5 sec
for 0.5 second Time for one T-state 0.3333x107"

= |500150.015,, = 1 500150,

On equating the total T states required for the subroutine and the number of T states for the
required time delay, the count value, N can be calculated.

S 24N + 35 = 1500150,

1500150 - 35
N= 24 - Eﬁm.ﬂln = E‘Eujm = F429 H

s Count value, N = F429,,

If the above delay routine is called by a program and executed with count value of F429
then the delay produced will be 0.5 second.

Note : The registers used in the delay routine are A, D and E. Also the execution of delay routine will alter
the flags. Hence if the contents of the se register are to be preserved, then the main program has to
save them in stack before calling the delay routine.

Thank You

MPES
Module 1l 19

Interrupt Structure in 8085:

* The process of interrupting the normal program execution to carry out a specific task/work
is referred to as interrupt.

* The interrupt is initiated by a signal generated by an external device (Hardware Interrupts)
or by a signal generated internal to the processor (Software Interrupts).

* When a microprocessor receives an interrupt signal, it stops executing the current main
program, saves the status (or content) of various registers (PC in case of 8085) in stack and
then executes a subroutine in order to perform the specific task requested by the interrupt.
The subroutine that is executed in response to an interrupt is also called Interrupt Service
Routine (ISR). At the end of ISR, the stored status of registers in stack are restored to
respective registers and the processor resumes the normal main program execution from
the point (instruction) where it was interrupted.

 When interrupt occured,

(SP) & (SP) —1; ((SP)) <« (PC)H

(SP) & (SP) -1 ; ((SP)) « (PC)L

(PC) < address of ISR

* When RET is executed in the ISR,
(PC)L & ((SP)) ; (SP) « (SP) +1

(PC)H & ((SP)) ; (SP) ¢« (SP) +1

* The external interrupts are used to implement interrupt driven data transfer scheme. The
interrupts generated by special instructions are called software interrupts and they are
used to implement system services/calls (or monitor services/calls). The system /monitor
services are procedures developed by the system designer for various operations and
stored in memory. Theuser can call these services through software interrupts. The
interrupts generated by exceptional conditions are used to implement error conditions in

the system.
nterrupt Driven Data Transfer Scheme

* Interrupts are useful for efficient data transfer between the processor and the peripheral.
When a peripheral is ready for data transfer, it interrupts the processor by sending an
appropriate signal. Upon receiving an interrupt signal, the processor suspends the current
program execution,saves the status in a stack and executes an ISR to perform the data
transfer between the peripheraland the processor. At the end of ISR the processor status is
restored from stack and the processor resumes its normal program execution. This type of
data transfer scheme is called interrupt drivendata transfer scheme.

* The data transfer between the processor and peripheral devices can be
implemented either by polling technique or by interrupt method. In polling
technique, the processor has to periodically poll or check the status/readiness of
the device and can perform data transfer only when the device is ready.

* In polling technique the processor time is wasted, because the processor has to
suspend its work and check the status of the device in predefined intervals.

Example: To detect a keyboard press when a keyboard is interfaced to
MICroprocessor.

CLASSIFICATION OF INTERRUPTS

In general interrupts can be classified in the following three ways:
* Hardware and software interrupts.

" VVectored and non-vectored interrupts.

= Maskable and non-maskable interrupts.

Interrupts initiated by external hardware by sending an appropriate signal to the interrupt pin of the
processor is called hardware interrupt. The 8085 processor has five interrupt pins TRAP, RST 7.5, RST 6.5,
RST 5.5 and INTR and the interrupts initiated by applying appropriate signal to these pins are called
hardware interrupts of 8085.

Software interrupts are program instructions. When a software interrupt instruction is executed, the
processor executes an Interrupt Service Routine(ISR) stored in the vector address of that software
interrupt instruction. The software interrupts of 8085 are RSTO, RST1, RST2, RST3, RST4, RST5, RST6 and
RST7. The software interrupts of 8085 are vectored interrupts. Software interrupts cannot be masked or
be disabled.

When an interrupt signal is accepted by the processor, and the program control automatically branches to
a specific address (called vector address) then the interrupt is called vectored interrupt. The automatic
branching to a vector address is predefined by the manufacturer of the processor. (In these vector
addresses the interrupt service subroutines(ISR) are stored.) In non-vectored interrupts the interrupting
device should supply the address of the ISR to be executed in response to the interrupt. All the 8085
interrupts excepts INTR are vectored interrupts.

The interrupts whose request can be either accepted or rejected by the processor are called maskable
interrupts. The interrupts whose request has to be definitely accepted (i.e., it cannot be rejected) by the
processor are called non-maskable interrupts. In 8085 the hardware interrupts RST 7.5, RST 6.5, and RST
5.5 can be masked/unmasked using SIM instruction. All the hardware interrupts except TRAP are disabled
by executing Dl instruction and they are enabled by executing El instruction.

Thank You

MPES
Module 1 20

Interrupt Structure in 8085 Contd.....
Hardware Interrupts:

Then the processor starts executing ISR in this address.
[TRAP is edge as well as level trigerred (to avoid false

Interrupts initiated by external hardware by sending an appropriate signal to the interrupt pin of the
processor is called hardware interrupt. The 8085 processor has five interrupt pins TRAP, RST 7.5, RST
6.5, RST 5.5 and INTR.

In 8085 the hardware interrupts RST 7.5, RST 6.5, and RST 5.5 can be masked/unmasked using SIM
instruction.

All the hardware interrupts except TRAP are disabled by executing Dl instruction and they are enabled
by executing El instruction.

All the 8085 interrupts except INTR are vectored interrupts, ie the program control automatically
branches to a specific address (called vector address) predefined by the manufacturer.

If the interrupt is non vectored, then the interrupting device

has to supply the address of ISR when it receives INTA signal. Interrupt | Vector address

RST 7.5 003C
interrupt due to noise), ie, TRAP should go high and :
stay high until it is acknowledged by the processor RST 6.5 0034,
by clearing the flip fl that future int t

Yy ciearing the 1iip TIop SO that tuture interrupts can RST 5.5 [}DEEH

be accepted. RST 7.5 is rising edge triggered and
INTR, RST 5.5, RST 6.5 are High level triggered.] TRAP 0024,

Software Interrupts:

* Software interrupts are program instructions. When a software interrupt instruction is
executed, the processor executes an Interrupt Service Routine(ISR) stored in the vector
address of that software interrupt instruction.

* The software interrupts of 8085 are RSTO, RST1, RST2, RST3, RST4, RST5, RST6 and RST7.
* The software interrupts of 8085 are vectored interrupts.

]] Interrupt | Vector address
» Software interrupts cannot be masked or be disabled.
RST 0 0000,
RST 1 0008,
RST 2 0010,
RST 3 0018,
RST 4 0020,
RST 5 0028,
RST 6 0030,
RST 7 0038,

Interrupt priority in 8085:

 When all the interrupts are enabled, the priority sequence of hardware interrupts from highest
to lowest is TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.

 When the 8085 processor accepts an interrupt, it will disable all the hardware interrupts except
TRAP. Hence in order to allow the higher priority interrupt while executing Interrupt Service
Subroutine (ISR) for lower priority interrupt, enable the interrupt system in the beginning of ISR
of lower priority interrupt, by executing El instruction.

Enabling, Disabling and Masking of 8085 Interrupts:

* All the hardware Interrupts except TRAP in 8085 can be Enabled or Disabled with the help of El
and DI instructions respectively. Also the the interrupts except TRAP can be disabled by system
(processor) reset or after recognition of another interrupt.

* The only signal which can override TRAP is HOLD signal. (i.e., If the processor receives HOLD
and TRAP at the same time then HOLD is recognized first and only then is TRAP recognized.)

* [Software interrupts are non maskable and it is initiated only through program.]

* All the hardware Interrupts except TRAP in 8085 can be Masked or Unmasked with the help of
SIM instruction.

INTR and its expansion:

* An external device can interrupt the processor by placing a high signal on INTR pin of 8085. If
the processor accepts the interrupt, then it will send an acknowledge signal INTA to the

interrupting device.

* On receiving the acknowledge signal, the interrupting device has to place either an RST n
opcode (or CALL opcode followed by 16-bit address) on the data bus.

* On receiving the RST n opcode, the 8085 processor

E-Bit
Latch

Y OTLSATS

i

-
-
[

T Drata

::} Bus of

Processor

generates the vector address of RST n instruction. =

* [The INTR interrupt can be expanded to accept 8-interrupt t:
B-to-3
inputs using 8-to-3 priority encoder.] t: e A
* This opcode is read by the processor and then it generates t t:" b
instruction internally. =9k E
To INTR l_’.

of BEs

: Expanding an INTR of the 8085 using an 8

[NTA from 2085 ——=

SV

-lo-3 priority encoder.

MPES
Module 3 1

Memory Interfacing to 8085:

Micro Processor Based System:

The microprocessor-based system to perform a specific task
consists of microprocessor as CPU, semiconductor memories
like EPROM and RAM, input device, output device and
interfacing devices. The memories, input device, output
device and interfacing devices are called peripherals.

The EPROM memory is used to store permanent programs and
data. The RAM memory is used to store temporary programs
and data. The input device is used to enter the program, data
and to operate the system. The output device is also used for
examining the results.

The microprocessor is the master, which controls all the activities
of the system. To perform a specific job or task, the
microprocessor has to execute a program stored in memory. The
program consists of a set of instructions stored in consecutive
memory location. In order to execute the program, the
microprocessor issues address and control signals, to fetch the
instruction and data from memory one by one. After fetching
each instruction it decodes the instruction and carries out the
task specified by the instruction.

ontd...

* The basic data size of 8085 is 8-bit. Therefore, the memory word size of the memories interfaced with
8085 processor is also 8-bit or byte.

 The 8085 uses a 16-bit address to access memory and hence it can address upto 216 = 65,53610 = 64 k
memory locations.

* A memory unit is an integral part of any microcomputer system and its primary purpose is to store
programs and data. In a broad sense, a microcomputer memory system can be logicallydivided into
three groups. They are as follows:

@ Processor memory
@ Primary or main memory
@ Secondary memory

* Processor memory refers to registers inside the microprocessor. These registers are used to hold data
and results temporarily when computation is in progress. Since the registers of the processor are
fabricated using the same technology as that of a microprocessor, there is no speed disparity between
these registers and a microprocessor. However, the cost involved in this approach forces a manufacturer
to include only a few registers in the microprocessor.

* The READY is an input signal that can be used by slow peripherals to get extra time in order to
communicate with 8085. The 8085 will work only when READY is tied to logic high. WheneverREADY is
tied to logic low, the 8085 will enter a wait state.

Block schematic re

: .
iAddress Lines 1
(] I
<Data Linei>
8085 |, " Memory
: :
<:untrul Lines>
I
i i

' Interface

P o o e o o s s

8085 Interfacing Pins

8085

Hiah_erm;i_eimas_&u_s_>n,,-ﬁ.

Lower Address/Data Bus >AD,,-AD,
> ALE

> 1O/M

> R
> WR
READY

]

Address Bus

lI""II:T.' —
GND €—

Static
RAM

I

:

CSICE - Chip Select (or Chip Enable)
WE/WE - Write Enable {or Write Control)

=

Data Bus

CS/CE
OERD
WE/WR

presentation for memory interfacing to 8085:

i

o=

Address Bus

Vi =
GND =

EPROM

m

>

Data Bus

pé— CSICE
pé— OEMRD

OERD - Output Enable (or Read Control)

A typical semiconductor memory IC will have n address pins, m
data pins (or output pins) and a minimum of two power supply pins
(one for connecting required supply voltage (VCC) and the other for
connecting ground). The control signals needed for static RAM are
chip select (chip enable), read control (output enable) and write
control (write enable). The control signals needed for read
operation in EPROM are chip select (chip enable) and read control
(output enable).

Example: Interfacing of a 64 kb program memory (EPROM) to 8085.

8085 | Apo-AD? . AD-A7

Thank You

MPES
Module 3 2

Generation of Chip select Signals for memory interfacing:

* Using logical gates
* Using Decoder IC's
2 to 4 decoder [74LS139] and 3 to 8 decoder [74LS138] are generally used.

Example for using logical gates:
Q. Interface two separate 4kb of RAM and 16kb of ROM to 8085.
Solution:

For 4 k addressing we need 12 address lines, ie, 212=4k
For 16 k addressing needs 14 address lines, ie, 2 14 =16 k

—f %z ¥
& X
_ *refe Gk 3
& SLLAN L
)
=
"
w. %M |
q.r T8I CI€R
| | LIT] w.
i i _
& = - e 28d
.lr....l_..ﬂ ﬂ% _U_ o
HIPOE L ’
E i . & 28 =4
i -
ki ye
| i
. oz
y P $E s

.Y A
A Ay iﬂlr-'En o " AH 'o li:I.*if""'l oF 07 66
Ranl Y p © o ; 0 B o 0 a o
6 0 g | [I l ' !

o | 6 0|0 O 6 o |o o

1w, RON Asmferds o addiune fem 4000y o TFFF,

Using Decoder IC for chip selection:

Power Supply TABLE : TRUTH TABLE OF 3-TO-8 DECODER
V., GND
6 o Enables Input Qutput
- A I = = | = = lrome | =] == =
—> 7, G, [G,|Gx| C| B| A 7| Ye| Ys| Ya| Ys| Y2 | ¥ | Yo
9 o
7, 1o |06l a8 % |2 |9 2|2 |95 |0
Ad 57
o [A=H el RNEAEIE IR IEIE AL SEIERENERE
2 B z 3-to-8 —3Y, | S
k= ? Becader, [1o kg |1 [0 [0 5] 0|3 € |2 |4]9 |0]3 |9
C—y MLSIE pY, (5
13 NI TESAEREERENENI AN
n—}_r:':
L BRI AL AE Nl ENEAENERERNE
57, HLAEIEIEIEAERERBEAENENENE
T 4 s% 1| @] 99|86 |% e |9 |<]9 |4]|% 3§
G G\ Gi 1] 0| ¢l F]A 10 a3 |alq |9]9 |4
Aihlos 0 |1 |1 X|X|X|H |H|H|H|[H|H|[H]|H

Fig. Signals of 74L5138.

Pin diagram and truth table for 3 to 8 decoder IC.

DESIGN EXAMPLE
Interface two numbers of 4kb EPROM and one number of 8 kb RAM with 8085 processor. Explain the interface
diagram and allocate binary addresses to memory ICs.

Diat Bus

D-Latch | fo= A

AD,- AD, pdyl 7415373 L
{8-Bit) 5
8085 EN
ALE '—T l_ = o
gy P A BE< S| [BE< ¢
) fa (1] rﬂ_ -':-’ '::_ _‘:? .r:?
D [RO =
WE l—w.h._n 2732 2732 6264
4 k=8 4k =8 EkxE
EPROM I EPROM 11 RAM
Ay ?u s (o il
A
.!.‘} = ¥, ‘ 1
< ™ I3 E:‘E Y.
—lc &7 v,
iF v,
G, v
Ga '
‘FI{_L‘ e

i _Fiag. : Memory interface diagram for Design Example - 1.

The 4 kb EPROM IC requires 12 address lines (2 =4 k). The 8 kb RAM IC requires 13 address lines
(2" = 8 k). The address lines A, - A are connected to both EPROM and RAM address input pins. The
address lines A, , A and A, are not used for memory address. Hence by decoding these address lines we
can generate chip select signals.

The 3-to-8 decoder, 74LS 138 i1s employed to produce the chip select signals for the system. The
decoder has 8-output lines which can be used as 8-chip select signals. In this, three chip select signals are
used for selecting memory ICs and the remaining five can be used for selecting other peripheral ICs in the
system or for future expansion of the memory capacity. The interface diagram is shown in Fig. DEI.
Addresss allotted to memory ICs are shown in Table-DEI.

The EPROM's are mapped in the beginning of memory space. The remaining addresses can be

allotted to RAM's. The EPROM memory i1s mapped from 0000, to OFFF,, and 2000, to 2FFF,. The RAM
memory is mapped from 4000, to SFFF, .

Thank You

MPES
Module 3 3

Interfacmg of 10 and Peripheral devices to 8085:

The 10 devices connected to a microcomputer system provides an efficient means of communication between the microcomputer
system and the outside world.

* These 10 devices are commonly called peripherals and include keyboards, displays, printers and disks (hard disk and Compact Disc
etc.)

* The 10 devices are generally slow devices. So, they are connected to the system bus through ports. The ports are buffer IC which is
used to temporarily hold the data transmitted from the microprocessor to IO device or to hold the data transmitted from IO device to
the microprocessor.

* To data transfer from the input device to the processor the following operations are performed:

€ The input device will load the data to the port.

€ When the port receives the data, it sends message to the processor to read the data.

@ The processor will read the data from the port.

@ After the data has been read by the processor the input device will load the next data into the port.
* To data transfer from the processor to the output device the following operations are performed:

@ The processor will load the data to the port.

€ The port will send a message to the output device to read the data.

@ The output device will read the data from the port.

@ After the data has been read by the output device the processor can load the next data to the port.

The various INTEL 10 port devices are 8212, 8155 /8156, 8255, 8355 and 8755. [Also since 8085 is having less number of 10 ports,
using 8255 PPl , we can increase the effective number of 10 ports.]

Intel 8255 PPI:

* The INTEL 8255 is a device used to implement
parallel data transfer between processor and slow
peripheral devices like ADC, DAC, keyboard, 7-
segment display, LCD, etc.

* It has 3 numbers of 8-bit parallel 10 ports (ports A,
B and C).

* Port-A can be programmed in mode-0, mode-1 or
mode-2 as input or output port.

* Port-B can be programmed in mode-1 and mode-2
as |0 port.

* When ports A and B are in mode-0, port-C can be
used as 10 port. The individual pins of port-C can
be set or reset.

* INTEL 8255 requires four internal addresses and
has one logic low Chip Select (CS) pin. The address
of internal devices of 8255 are listed in Table.

Table: Internal Address of 8255

Internal device

\

Port-A 0
Port-B 0
Port-C 1

Control Register

Control Words in 8255:

e The 8255 has two control words: 10 Mode

Set control Word (MSW) and Bit
Set/Reset (BSR) control word.

The MSW is used to specify |10 functions
and BSR word is used to set/reset
individual pins of port-C. Both the control
words are written in the same control
register. The control register differentiates
them by the value of bit B7

The BSR control word does not affect the
functions of ports A and B.

Bit B7 of the control register specifies
either the 10 function or the bit set/reset
function. If B7 =1, then the bits B6 -
BOdetermine 10 functions in various
modes. If bit B7 =0, then the bits B6 -B0
determine the pin of port-C to be set or
reset.

GROLP-B

Pori-C Lower (PO, - PO

| = Imnpt ;. {0 = Oowipa

Port- B
| = lmpuwt ; O = Owipas

Pori-B Mode Selection
O=MModedl ; | = Mode-1

iRV LTE -

Pori-C Uipper { PC, - P10

|l = Impant 3 O = Onwtpa

Port- A
| = lypawt 3 b = Onwipa

Pori- A Mode Selection

|1 ob=Mode-D : 01 = Mode-]

13 = Mosde-2

Fig. : Format of 1O mode set control word of 8255.

B, B, | B, | B, B,

L™ -
D"t Care
= BS B Muode

B, B, B,
|_) I =5
i = Resa
g

1] 1] 1] ScifFesa P i

]
0 0 | Set/Resot PC, =
0 | 0 Set/Reset PC L
0 | | Set/Reset PC :b = i
1 L] L] Set/Feset PC, : .,g
| 0 | | Set/Reset | BC £ 2
| | 0 Sct/Reset PC, BF
| | | Set/Resat | PC, oA

/

Fig. Format of Bit Set/Reset control word of 8255.

'modes in 8255:

* The 8255 has three ports: Port-A, Port-B and Port-C. The
ports A and B are 8-bit parallel ports. Port-A can be

IO Modes of 8255

* Mode-0 : In this mode, all the three ports can be

programmed to work in any one of the three operating
modes as input or output port. The three operating modes
are :

* Mode-0 - Simple IO port.
* Mode-1 - Handshake 10 port.
* Mode-2 - Bidirectional 10 port.

Port-B can be programmed to work either in mode-0 or
mode-1 as input or output port.

Port-C pins (8 pins) have different assignments depending
on the mode of ports A and B. If ports A and B are
programmed in mode-0, then port-C can perform any one of
the following function :

* 1. As 8-bit parallel port in mode-0 for input or output.

* 2. As two numbers of 4-bit parallel port in mode-0 for input or
output.

* 3. The individual pins of port-C can be set or reset for various
control applications.

If port-A is programmed in mode-1/mode-2 and port-2 is
programmed in mode-1 then some of the pins of port-C are
used for handshake signals and the remaining pins can be
used as input/ output lines or individually set/reset for
control applications.

programmed either as input or output port. In mode-0,
the outputs are latched and the inputs are not latched.
The ports do not have handshake or interrupt
capability. The ports in mode-0 can be used to
interface DIP switches, Hexa-keypad, LEDs and 7-
segment LEDs to the processor.

Mode-1 : In this mode, only ports A and B can be

programmed either as input or output port. In mode-1,
handshake signals are exchanged between the

processor and the peripherals prior to data transfer.

The port-C pins are used for handshake signals. Input

and output data are latched. Interrupt driven data

transfer scheme is possible.

Mode-2 : In this mode the port will be a bidirectional
port (i.e., the processor can perform both read and
write operations with an IO device connected to a port
in mode-2).0nly port-A can be programmed to work in
mode-2. Five pins of port-C are used for handshake
signals. This mode is used primarily in applications
such as data transfer between two computers or
floppy disk controller interface.

Pin Diagram of 8255:

PA, <31 T sk pa,
PA, {2 39k pa, By =1 .
PA, 3 38 PA, ﬁ;') PA, - PA, Pin | Description
'ﬁ‘"‘";_ ; 37 "w_m e 0.5 Data Lines
. E1s R TH
Fars & 36 P = RESET Reset Input
Vo —17 34 D, WE —> pC.-pc, |CS Chip Select
s 33 D, it RD Read Control
Ay —NM 9 32 D, A — 4 — ;
o : WR Write Control
1€—H10 RIS5A I D, B255A
PC. &—M11 10 D. Ay —> A A, Intemal Address
PC, 312 29 D, - PA. - PA, Port-A Pins
PC. 13 1% D, RESET —» PC, - PC, .
PC, e Slis A hkn B R PB,-PB, | Port-B Pins
PC, 15 1% V.. CS = * PC,-PC, | Port-C Pins
PC, 16 25 PB 2
PC, 17 24 FH: (+3=V)Vee —> PE, - PB, Voo +5-V
PB, ¢ 12 " P, PN L 0-V (GND)
PB, ¢«—3{19 22 k—pp, (0-VIVi € 8
FB, 20 21 PB,

Fig. Pin description of 8255.

Port C pin assighments:

TABLE - PORT-C PIN ASSIGNMENTS

Functions of Ports Aand B| PC. PC |PC | PC | PO | PC | PC | PG,
Ports A and B in mode-0 I0 IO 0 10 0 10 10 10
Input/Qutput
Ports A and B in mode-1 0 I0 | IBF, | STB, [INTR, | STB, | IBF, | INTR,
Input ports _
Ports A and B in mode-1 OBF, | ACK, | 10 | 10 |INTR, |ACK, |OBF, | INTR,
QOutput ports _
Port-A in mode-2 OBF_ | ACK, | IBF, | STB, [INTR,| 10 | 10 | IO
Port-B in mode-0

1o = Input /Output line OBF - Qutput Buffer Full

STB - Strobe ACK - Acknowledge

IBF - Input Buffer Full The subscript A denotes port-A signal.

INTR - Interrupt Request The subscript B denotes port-B signal.

Interfacing of 8255 to 8085:

AD - AD, bty
8 §-Rit .

e

Latch

ALE —)lf”_

=t
e

8085

— D
WE = WR

| Bl
N

i
]]]

A=-to=8 [decoder

e
-]

8255

=

ii
|1|".
[

RESET > RESET
W

T4LS138
g

[0CS-6 RD = RD
57 =5 J o
WR = WR
RESET —» RESET

1 o T |
=R

| =4 e

IRE

T

K> PRB,-PB,
8

Wi PO, IC,
8

Fig.: Interfacing 8255 with B085 processaor.

[PA,-PA,
8

* The address line A0 of 8085 is connected to
AO of 8255 and A1 of 8085 is connected to Al
of 8255 to provide the internal addresses. The
|O addresses allotted to the internal devices of
8255 are listed in Table. The data lines DO -D7
are connected to DO -D7 of the processor to
achieve paralleldata transfer. IO/ M is made
high and connected to active high pin of
decoder to ensure 10 mapping else IO/ M is
active low for Memory mapping.

TABLE - IO ADDRESSES OF 8255

Binary address

Internal | Decoder input | Input to address| Hexa
device | and enable pins of 8255 | address

A'IAEASA-I AE A7A1 A{I
PotA |0 0 O x x 0 0| 10

1
Port-B) 0 0 1 X %X 0 1 11
Port-C 0 0 O 1 X x 1 0 12
Control 0 0 0 1 i § T 4 13
Register

Note : Don't care "x" is considered as zero.

Thank You

MPES
Module 3 4

Memory Mapping and 10 Mapping of 10 devices with 8085:

* The port and peripheral devices will have one logic low/high chip select pin. The processor can
access the port/peripheral device by supplying internal address and chip select signals. Therefore,
the port and peripheral device interfacing (10 interfacing) deals with allocation of various internal
addresses and generation of chip select signals.

* There are two ways of interfacing IO devices in 8085-based system.
@ Memory-mapped 10 device.
¢ Standard I0-mapped 10 device or Isolated 10 mapping

In memory mapping of IO devices the ports are allotted a 16-bit address like that of the memory
location. Some of the chip select signals generated to select memory ICs are used for selecting the
|O port devices. Hence, the processor treats the |0 ports as memory locations for reading and

writing (i.e., the devices which are mapped by memory mapping are accessed by executing memory
read cycle or memory write cycle).

In standard IO mapping or isolated |0 mapping, a separate 8-bit address is allotted for the 10 ports
and the peripheral ICs. The processor differentiates the |0-mapped devices, from the memory-
mapped devices in the following ways:

* For accessing the |IO-mapped devices the processor
executes 10 read or write cycle.

* During IO read or write cycle, the 8-bit address is placed on

both low order address lines and the high order address H_U_D:’_._
lines.

* 10/M is asserted high to indicate the 10 operation (for read I{}fﬁ—‘—M
as well as write).

» A 8085 processor does not provide separate read (RD) Ti’i——DO"-
and write (WR) signals for memory and 10 devices. But
it differentiates the memory and IO device accessed by }_lﬁﬂ
|0/M signal. The three signals RD, WR and I0/M can be '
decoded as shown in Fig. to provide separate read and
write control signals for IO devices and memory devices. 0w

| 1

* When the devices are |I0-mapped, then only IN and
OUT instructions have to be used for data transfer :Circult to generate separate read and write signals for memory
between the device and the processor. For the 10- and |0 devices in an 8085-based system.
mapped devices a separate decoder should be used to
generate the required chip select signals.

Memory mapping of 10 device

10 mapping of 10 device

1. 16-bit addresses are provided for 10 devices.

2.The devices are accessed by memory read or
memory write cycles.

3.The 10 ports or perpherals can be treated like
memory locations and so all instructions related
to memory can be used for data transfer between
the 10 device and the processor.

4. In memory-mapped ports, the data can be moved
from any register to the ports and vice versa.

5.When memory mapping is used for IO devices,
the full memory address space cannot be used
for addressing memory. Hence memory mapping
is useful only for small systems, where the
memory requirement is less.

6. In memory-mapped 10 devices, a large number
of 10 ports can be interfaced.

7.For accessing memory-mapped devices, the
processorexecutes the memory read or write cyde.
During this cycle, IO/M is asserted low (IO/M=0).

X

. 8-bit addresses are provided for 10 devices.
. The devices are accessed by 10 read or 1O write

cycle. During these cycles, the 8-bit address is
available on both low order address lines and
high order address lines.

. Only IN and OUT instructions can be used for

data transfer between the 10 device and the
processor.

. In 10-mapped ports, the data transfer can take

place only between the accumulator and the ports.

. When 10 mapping is used for IO devices, then the

full memory address space can be used for
addressing the memory. Hence it is suitable for
systems which requires a large memory capacity.

. In 10 mapping, only 256 ports (2% = 256) can be

interfaced.

For accessing the 10-mapped devices, the
processor executes the 10 read or write cycle.
During this cycle, IO/M is asserted high (10M=1).

Example for Memory mapping of IO devices:

Dy - b,
£ I. I, Binary address
8 & 8 ;
Device Decoder Input to address pins of memory/8255 Hexa
.G D - Latch zﬁa input . sdiliess
AD, - AD, 7418373 1
o (&-Bir) ” Z e =) A AgAy Ag | AglA A A A | A AA A AAA A
- | 1" i &1 0 0 0[0[00O0O0|000O0] 000 0| 0000
B85 EN n . 0 00|O|OOCOOC|ODOO 0 0 0 1| 0001
) 0 0 0O 0|0OCOCQ|ODO0OODO@O 0 010 0002
ALE Acshe 2764
A=Ay bk - EPROM
Wi >R y A |2§ |:'|E O e O e 1. 11 1 | ¥FF
= o = 11 1(0|0000]0000 0 00 O EOOD
'\l: al_nlr_‘.'_*_.l_\l-_!_r_ 1110100000000 0 0 0 1 EQO1
c < C||BEE< S| |EBE << 6264 11 1/0/0000|0000]| 00 1 0] E002
LA Y, To EPROM % < EI: e "
-'-.” & '?n o 2764 264
A, \ 626 - - - s . Gal A o :
i:-»u %: Y. To 8255 1 Bkx8 BkxB 8255 1 1 1 1 013 1% 14 193 7 1 4 3 A FFFF
- T — EPROM RAM 8255 |
"'ﬂl’ Por-A 01 0 XXX XX |XX XX X 0 0 X | 4000
5V Ead Port-B 01 0| XIXXXX|XXXX| X081 x| 4002
B it - = = = Port-C 01 0|X[XXXX|XXXxX| X9 0 x| 404
1o _ [Y. f ‘r 1 Controlregister | 0 1 0 | XX X X X | X X X X X 1 1 X | 4008
L 3 h 45 o RAM ,\—,' ?? Lf:

Example for IO mapping for 10 devices with 8085:

1= 1,

4

AD - AD, bty
8 §-Rit .

A-A,

Latch

ALE —)lf”_

e

,""nw .'Jll.I

8085

= 1=
¥
=

— D
WE = WR

?
|=]

| &

i
=g =g =g

ol s
il i
|

e

-]

i’:
It

8255

=

ii
|1|".
[

RESET > RESET
W

=
%
e

T4LS138
g

A=-to=8 [decoder

RD = RD
WR = WR
RESET — RESET

HOCS-T

1 e T
o o P
| =4 -
1E
L e N o

Lo] e

K> PRB,-PB,
8

Wi PO, IC,
8

Fig.: Interfacing 8255 with B085 processaor.

TABLE - IO ADDRESSES OF 8255

[PA,-PA,
8

* The address line A0 of 8085 is connected to
AO of 8255 and A1 of 8085 is connected to Al
of 8255 to provide the internal addresses. The
|O addresses allotted to the internal devices of
8255 are listed in Table. The data lines DO -D7
are connected to DO -D7 of the processor to
achieve paralleldata transfer. 10/ M is made
high and connected to active high pin of
decoder to ensure 10 mapping else IO/ M is
active low for Memory mapping.

Binary address

Internal | Decoder input | Input to address| Hexa
device | and enable pins of 8255 | address
A] Aﬂ Aﬁ l&"-l A.’i Aﬂ A1 A{I
Port-A 0 0 0 1 x x 0 0 10
Port-B 0 9 0 1 x x 0 1 11
Port-C 0 0 0 1 x x 1 0 12
Control |O O O 1 X % 1 9 13

Register

Note : Don't care "x" is considered as zero.

IO Read Machine Cycle:

— T, —sje— T, —fs— T, —»
A WA WA
r =i B-bitporty / Dgtafrom \ |
LNy = address) < i }
B-bit port _
g las X address }
ALE —/_\
RD _ /——
IO/M, 8,. S, meﬁ= 1| 8,=0 | §=1

(WR will be high : READY is tied high cither
permanently or temporarily in the system.)

At the falling edge of T1, the microprocessor output the
8- bit port address on both the low order address lines
(ADO -AD7) and high order address lines (A8 to A15). ALE
is asserted high to enable the external address latch. The
other control signals are asserted as follows. 10/M=1, SO
=0and S1 =1. (I0/M is asserted high to indicate |10
access.)

At the middle of T1, the ALE is asserted low and this
enables the external address latch to take the port
address and keep on its output lines.

In the second T-state (T2) the IO device is requested for
read by asserting read line low. When read is asserted
low, the 10 port is enabled for placing the data on the
data bus. The time allowed for 10 port to output the data
is the time during which read remains low.

At the end of T3, the read signal is asserted high. On the
rising edge of read signal the data is latched into
microprocessor. Other control signals remains in the
same state until the next machine cycle.

IN instruction is used.

1O write Machine Cycle:

CLK —

o= T, —ohe—

AD, — AD,

B-bil poyt
adkdre s

D
p

. 1
gta irom
[WOeS SOT |

X=bit port
address

ALE —
WR

A
/ \

IOVM, S, S,

XI:JJE= |

(RD will be high ; READY is tied high either
permanently or temporaniy in the system.)

At the falling edge of T1, the microprocessor outputs the
8-bit port address on low order address line(ADO - AD7)
and high order address lines (A8 to A15).

ALE is asserted high to enable the external address latch.
The other control signals are asserted as follows : I0/M=1,
SO=1andS1 =0. (I0/M is asserted high to indicate IO
access.)?2.

At the middle of T1, the ALE is asserted low and this
enables the external address latch for latching the port
address into its output lines.

In the falling edge of T2, the processor output data on
ADO - AD7 lines and then request 10 port for write
operation by asserting the write control signal WR to low.

At the end of T3, the processor asserts WR high.
Thisenables the IO port to latch the data into it. The 10
port should prepare itself to accept the data within the
time duration in which write control signal remains low.
Other control signals remains in the same state until the
next machine cycle.

OUT instruction is used.

Thank You

MPES
Module 3 5

LED interfacing with 8085:

f’t‘l‘_}grﬂlﬂ port A as illl‘ﬂ.ll and port B as i}l|l|':|l,||_ Read port A and dlhp]d}" ol]"_lur[B.
CONTROL WORD:

il (n]_l | 0 [0 I'r‘i | 0 \-avuuﬂ

THEORY

DO-D7 — > <—"> PAD-PA7

—

L {—"% poa-pey

RESET g-

AD <— > PCO-PC3

Al

RD < — > PB0-PB7

WR

[
L
th

CONTROL WORD

oy D D5 ps D} @ om D
GROAT B
-"hfa—
% Port Clower (PCY-PO0} 1=ip . D=0op
> PeriB.1=1p.0=0op
+ Port B . Mode selection 0= mode 0, 1= il
GROUP A
¥ Pmi’.‘upptlI:PI'-'.‘J--FI'."-'II.I=-|:L.I.'I=-'|;r
: - pPortA,l=ip.0=0p
- A . Mode selection 00 = moie 0
Fort 01 = mode 1
1% = mode 2
S
—or]=|r[}hinir.HHHMH¥"=n

33040 7
—\Wr PL} LED]
1300)
’-JWV——‘D'_" LED?
3100 ST
—AMA—— LED3
B¥n %)
| MA—1 1 LED4

PROGRAM

“Address | Hex code | Label Mnemonics & | Comments
Operands _
| 6000 3E MVI A, 90y CW is moved to A
| 6001 90
6002 D3 OuUT 03 Out CW to control register
6003 03
6004 DB START |IN 00 Read port A
6005 00
| 6006 D3 OUT 01 Display port B
6007 0l
6008 C3 JMP START
6009 04
600A 60

Thank You

MPES
Module 3 6

1terfacing with 8085:

* In many applications, an analog device has to be interfaced to digital system. But, the
digital devices cannot accept the analog signals directly. So, the analog signals are
converted to equivalent digital signal (data) using Analog-to-Digital Converter (ADC).

* TheA/D conversion is the process by which the analog signal is represented by an
equivalent binary data

* |f the digital data is represented by n-bit binary then it can have 2n different values.

* In A/D conversion the given analog signal has to be divided into steps of 2" values, and
each step is represented by one of the 2" values.

* The resolution of the converter is the minimum analog value that can be represented by
the digital data. If the ADC gives n-bit digital output and the full scale analog input is X
volts, then the resolution is X / 2" volts.

 The conversion time is defined as the total time required to convert an analog signal into
its digital equivalent.

ADC 0808/ 0809

The ADC0809/0808 is an 8-bit ADC with an inbuilt 8-channel multiplexer.
The ADC0809/0808 is available as a 28-pin IC in DIP (Dual In-line Package).
The analog to digital converter is treated as an input device by the microprocessor.

IN3=M1 N 28hk=IN2
ING =3 2 17 K—INI
INS =3 3 26 K—INO
ING6 =M 4 = 25 A
IN7 =3 5 - 14 =B
START =3 6 = 71 = C
FOC &= 7 E 77 = ALE
D, ¢ 8 z 21 D, (MSD)
OFE —» 9 E 200,
CLOCK =3{10 - 19 =D,
V. =11 18 =>D,
Voo (t) =312 17 2>D, (LSD)
GND €13 16 =V, (-)
D 14 15 =D,

SIGNAL DESCRIPTION OF ADCO0B09/ADCO0808

Signals Description

INO-INY Eight single ended analog input to ADC.

AB,C 3-bit binary input o select one of the eight analog signals for conversion at any
one ime.

ALE Address latch enable. Used to latch the 3-bit address input to an internal latch.

START Start of conversion pulse input. To stat ADC process this signal should be asserted
high and then low. This signal should remain high for alleast 100 ns.

CLOCK Clock input and the frequency of clock can ba in the range of 10 kHz to 1280 kHz.
Typical clock input is 640 kHz.

Ve ¥V el-) | Reference voitage input. The positive reference voltage can be less than or
equal to V_ and the negative reference voltage can be grealer than or equal to
ground.

DO, The B-bit digital output. The reference voltages will decida the mapping of analog
input to digital data.

EOC End of conversion. This signal is asserted high by the ADC to indicate the end of
conversion process and it can be used as interrupt skgnal to processor.

OE Output buffer Enable. This signal is used b read the digital data from output buffer
after a valid EOC.

v, Power supply, +5-V

GND Power supply ground, 0-V

* Step Size or quantization step in ADC is,
Address input | Selected
Q _ Veer Viep(+) = Viep(-) G| 8| A | N
step 25 o 156 | 0| O IND
2 o| o 1 INT
The digital data corresponding to an analog input (V) is given by, 0110 IN2
el %] 1 IN3
-~ Va e[l s | e
Digital data = Q— =]
ep " + | 1| o ING
1|1 1 IN7
EXAMPLE Input Channel selection based on
ABC signals.

Let, V, (H)=384 V, V,_ (-) =

yﬂﬂ_{_}}_yﬂw[_} 3.84
5 Quep = =2 20,015 V=15 mV
Qar 256, 256 N

Let the input analog voltage be 2.56 V. Now the digital data corresponding to 2.56 V is given by,

Vio 120 | =169, =A9, =1010 1001,

i 0015

Digital data =

Vief +

Vet el
5V =
- - SL_J Vee o Clock up
ALE ;Iljr .
0 : e i
ADT7-ADO | A ag |, CS PA; - PA, < 0,-0, INO
=] :
- S IN2}e—Analog
A Al PC, e EoC ADC : P
15 A0 PC, s 0808 A Vs
8085 9 oE =
D7-D0 . D700 87554 . ALE o, ¥
- IV A B C I
RD .
2D = . ik
PB,
= T PB,
WR 0 WH

Figure: Interfacing ADC with 8085

* During the analog to digital conversion process, Initially, microprocessor sends
an initializing signal (start of conversion-SOC) to the ADC to start the analog to
digital data conversion process. The start of conversion signal is a pulse of a
specific duration.

* The microprocessor has to wait for the digital data till the conversion is over.
After the conversion is over, the ADC sends end of conversion EOC signal to
inform the microprocessor that the conversion is over and the result is ready at
the output buffer of the ADC.

* These tasks of issuing an SOC pulse to ADC, reading EOC signal from the ADC
and reading the digital output of the ADC are carried out by the CPU using 8255
/O ports.

Example: Interfacing ADC 0808 with 8085 using 8255 ports. Use port A of 8255 for transferring
digital data output of ADC to the CPU and port C for control signals. Assume that an analog input is
present at I/P2 of the ADC and a clock input of suitable frequency is available for ADC.

Solution: The analog input I/P2 is used and therefore address pins A,B,C should
be 0,1,0 respectively to select I/P2.

The OE and ALE pins are already kept at +5V to select the ADC and enable the
outputs.

Port C upper acts as the input port to receive the EOC signal while port C lower
acts as the output port to send SOC to ADC.

Port A acts as a 8-bit input data port to receive the digital data output from the
ADC.

e The 8255 control word is written as follows:
D7 D6 D5 D4 D3 D2 D1 DO
1 0 0 1 1 0 0o

DAC Interfacing to 8085:

In many applications, the microprocessor has to produce analog signals for controlling certain analog devices.
Basically the microprocessor system can produce only digital signals. In order to convert the digital signal to

analog signal a Digital-to-Analog Converter (DAC) has to be employed.

The DAC will accept a digital (binary) input and convert to analog voltage or current.

Every DAC will have "n" input lines and an analog output.

The DAC requires a reference analog voltage (Vref) or current (Iref) source. The smallest possible analog value
that can be represented by the n-bit binary code is called resolution. The resolution of DAC with n-bit binary

input is 1/2" of reference analog value. Every analog output will be a multiple of the resolution.

For example, consider an 8-bit DAC with reference analog voltage of 5 volts.
Now the resolution of the DAC is (1/28) x 5 volts. The 8-bit digital input can
take, 28 = 256 different values.

The analog values for all possible digital input are as shown in Table

Digital input

Analog output

0000 0000

0000 0001

0000 0010

0000 0011

1111 1911

;_';.DE' « 5 YWolts

1
E'a <3 Volts

22‘;_ « 5 Volts

i «5 Volts
E-B

255

8

« 5 Voits

=

From 8085

veC

Vref [+)

Vel (-]

GND

+10V
1.5k0)

-

Thank You

MPES
Module 5 1

Embedded System:

An Embedded system is a system that has a software embedded in to a computer
hardware for doing a dedicated task. It may be an independent system or a part
of large system.

Eg: Mobile phones, TV remotes, Printers etc.

Characteristics of Embeddded systems:
* Reliability
 Cost effectiveness
* Low power consumption
* Fast execution time
e Efficient use of memory
* Processing power is more

CPU of the embedded system can be Micro processor, Micro Controller or DSP or any
Application Specific Processor (ASP).

Micro processor based System Vs Micro Controller based System:

General-

Micro-

(a) General-Purpose Microprocessor System

Data bus
| |
Serial
170
RAM ROM Port Timer E}il’:l
|
Address bus

CPU | RAM ROM
1/OQ | Timer | Serial
COM
Port

{b) Microcontroller

mparison:

A Microprocessor does not contain RAM, ROM, |/O
ports, Timer/ Counters,Serial Communication ports
internal to it. So for a system these are to be to
interfaced externally.

A Micro Controller contains the circuitary of Micro
Processor and in addition to that it has built in ROM,
RAM, 1/0 ports,Timer/ Counters,Serial Communication
ports etc.

Bulkier System

Less Size

More time to design PCB as more Hardware

Les Time to design.

Expensive

Less Expensive

More versatile as the designer can choose the amount
of memory and required peripherals.

Less versatile

Access time for Memory and IO devices are high

Less access time.

Less No. of pins are Multifuctional

More pins are Multi functional

More Instructions required to move data between
memory and CPU

Less Instructions required to move data between
memory and CPU

Less No. of bit handling instructions

More No. of bit handling instructions

8085, 8086, Pentium series etc

8051,8052, PIC, ARM etc..

Desktop, Laptop etc

Mobile phones,Printers, TV remotes etc..

Internal Architecture of 8051;

.ﬁ.[-"DR_ESSf DATA

EXTERNAL
INTERRUPTS
ON-CHIP
ROM
. for
INTERRUPT ETC.
CONTROL 5. D'“fa':ﬂw TIMER 0 |=—
: LodE TIMER 1 |=—
[;. d,.-""“a.___‘
Y . P
|
CPU <
i Il
" BUS 41/0 SERIAL
; CONTROL PORTS PORT
0 T ! Vo
L d TXD RXD
. % PO P2 PI

ea——

SLNANT J3INMO0

Features of 8051:

e 8 bit Micro controller

* 40 pin DIP

e 128 bytes of internal RAM

e 4K bytes of onchip ROM
 Two 16 bit Timers / Counters
* One Full duplex Serial port

* Four 8 bit I/O ports.

* 6 interrupt sources

* Harvard Architecture

P1.0[]
P11 [
P1.2]
P13
P1.4]

P15]
P1.6[]

P1.7]

AST]
(RXD) P3.0]

(TXDy P3.1]
(INTC) P3.2 [
(INTT) P33 [
(TC) P3.4 [
(T1) P35S [
(WR) P3.6 [
(RD) P3.7
XTALZ []
XTAL1]
GHND [

1 A0
2 39
3 a8
? 8051 37
5 36
i a5
7 34
a 33
g 32
10 a1
11 30
12 29
13 28
14 2T
15 26
16 29
17 24
18 23
19 22
20 21

iRjujujuininjujuinininjnjuininjupnjun

Veo

PO.O (ADO)
PD 1 (AD1)
P02 (AD2)
P0.3 (AD3)
P04 (AD4)
PO.5 (ADS)
PO.6 (ADS)
PO/ (ALY)
EANPP
ALE/PROG
PSEN
P2.7 (A15)
P26 (Al14)
P25 (A13)
P2 4 (A1)
P22 (Al11)
P22 (A1)
F2 1 (A9)
P20 (AB)

Thank You

MPES
Module 5 2

Register Organisation in 8051.:

* In 8051, there is only one data type which is 8 bits.

 Since there is a large number of registers in 8051, they can be classified as General purpose
registers and Special function registers.

* Most widely used registers of 8051 are, A [accumulator], B, RO to R7 of each bank of
registers. There are 4 such Banks of registers.

* These 32 registers (8 X 4 = 32) RO to R7 of each bank, is known as General purpose registers .
* All of these general purpose registers are of 8 bit size.
* Registers A and B are used to hold results of mathematical and logical operations by CPU.

* Register B is used along with A for multiplication and division operations and has no other
function other than as a location where data is stored.

* In addition to hold the operands and results, Register A is used for all data transfers
between the 8051 and the external memory.

e Except Program Counter [PC] and DPTR register, all are 8 bit registers. PC and DPTR are 16
bit registers.

RAM memory space allocation in 8051 "

e 128 bytes of RAM in 8051. ie, addresses drom 00 H Scratch Pad RAM
to 7F H. .

* The total RAM space is divided in to three. RO =

1. A total of 32 bytes from locations 00 H to 1F H RI . BitAddroimabile AN
are set aside for Register banks and Stack. = l:_,
 [00011111=1FH=31d isequivalentto31+1=32 Register Bank 3

since we start from 00 H.] R3 18
* These 32 registers are organised as Four register 7

banks of eight registers each. RO to R7 in each bank. i s haginethak 2
* The four register banks are numbered from 0 to 3. RS &
* Each register can be addressed by its name (RO to > Register Bank 1 (Stack)
R7), if the bank is selected, else by its RAM address. ;‘“
 |f the bank 3 is selected then RO will point to RO of i ‘ Register Bardk 0
bank 3, else address 18 H will point to the same 00
location.
* Bank selection can be done using the bits RSO and
RS1 in the program status word register. [PSW] RS1 [PSW.4] | RSO [PSW.3]
* upon Reset Bank 0 is selected. Bank 0 0 0
Bank 1 0 1
Bank 2 1 0
Bank 3 1 1

Register bank selection using PSW bits

2. A total of 16 bytes from location 20 H to 2F H are set aside for Bit addressable Read/

Write memory.

* If only one bit is needed, we can use the bit address ie, 00 H to 7F H along with instructions for
bit operation.

* If one byte is needed then address 20 H to 2F H along with instructions for byte operation.
3. A total of 80 bytes from locations 30 H to 7F H are used for read / write
storage operations known as scratch pad RAM.
TACK in 8051:

Stack is a section of RAM used by the CPU to store information temporarily. the
information could be data or address.

* The register used to point towards the stack is called Stack pointer which is of 8 bit in 8051.
The address held in the SP is the location in internal RAM where the last byte of data was
stored by the stack operation.

* When the 8051 is powered up, the SP points to the location 07 H, (which can be changed with in
the program.) This means that the RAM location 08 H is the first location being used as stack of
8051 by default. ie, in Bank 1.

* Generally locations 08 H to 1F H can used as stack. If a given program needs more stack, we
can change the SP to RAM locations 30 H to 7F H usin% the program instructions. Can't use
locations 20 H to 2F H, as it is reserved for bit addressable memory.

PUSHing in to the Stack:

* When we PUSH data in to the stack, the SP is incremented by one before
storing the data in to the stack, so that stack grows up as data is stored.

Show the stack and stack pointer for the fnl]nwing. Assume the default stack area and register () is selected.
MO R&, #25H
MOV R1, #1z2H
MOV R4, HOF3H
PUSH 2]
BUSH 1
FIISH 4
Solution:
After PUSH 6 After PUSH 1 After PUSH 4
OB 0B 0B (B
0A (A A A F3
Y 0y 04 12 (@ 12
(8 (8 25 08 25 08 a0
Start 5P =07 aP = (8 SP =9 aP=0A

POPping from Stack:

* With every POP or retrieval, top byte of stack [LIFO] is copied to the
register specified in the instruction and the the SP is decremented by one.

Examining the stack, show the contents of the registers and SP after execution of the following instructions. All
values are in hex,
POP 3 ; POP stack into R3
POP 5 ; POP stack into RS
POP 2 i POP stack into R2
Solution:
After POP 3 After POP 5 After POP 2
o 54 O 0B
A M 0A P 0A 0A
(9 76 (9 76 e /b]
B 68 6C B 6 8 6
Start SP = 0B SP =0A SP =09 SP =08

 The CPU can also use the use the stack to save the address of the instruction that comes just
after the CALL instruction so that the CPU can know where to resume after the execution of
the called sub routine.

tack and Bank 1 Conflict:

* When 8051 is powered up, SP = 07 H. There fore the first location of stack is RAM location
08 H which belongs RO of register bank 1. ie, Register bank 1 and Stack is using the same
memory space. So if in a program we need to use register bank 1 and 2, it is needed to
relocate stack to another section of RAM.

e 8051 Special Function Register

Name

Accumulator

=]

EOH

B register

:

Program status word

:

Stack pointer

x
=

1

Dhata pointer 2 bytes

Low byte

High byte

Port 0

Port 1

Port 2

Port 3

Interrupt priority control

lnm_plmnbhnmmn]

Temer / counter mode control

Timer S counter control

Timer / counter 2 control

Timer / counter mode control

Timer /counter O high byte

Thoner fcourther O low h!tt

Timer/ counter 1 high byte

Timer /counter 1 low b!rhe

HHG AR

Timer / counter 2 high byte

R

DH

Timer /counter 2 low byte

T/C 2 capture register high byte

£

T/C 2 capture register low byte

H

Serial control

Serial data buffer

Power control

1847

ROM in 8051:

8051 has 4K bytes of internal ROM. 000

Internal ROM of 8051 starts at 0000H and goes
upto OFFF H which corresponds to 4K. —

Externally if needed it can interface upto 64K bytes
of memory externally. But the total of internal and
external ROM should be equal to 64K bytes. ie, if
we are using internal ROM and external ROM then,
internal from 0000 H to OFFF H and external from
1000 H to FFFF H.

If only external ROM is used for total 64K bytes,
then EA pin should be kept low for that. if EA pin is
high then first internal ROM then remaining can be
external ROM.

AESOC 5]

FREF

[lvinaY

Sodrings
ﬁ:{'_‘lu

'

S RS

AL ey TYULTTLOES

Program Status Word in 8051 [PSW]:

The program status word (PSW) register is an 8-bit register. It is also referred to as the flag register. Although the
PSW register is 8 bits wide, only 6 bits of it are used by the 8051. The two unused bits are user-definable flags. Four
of the flags are called conditional flags, meaning that they indicate some conditions that result after an instruction is
executed. These four are CY (carry), AC (auxiliary carry), P (parity), and OV (overflow).

G lelr == [T

Y Isw7? Carry flag,

AC PSWé Auxiliary carry flag,

FO PSWS5S Available to the user for general purpose.

RS1 PSW4 Register Bank selector bit 1.

RSO I'SW3 Register Bank selector bit 0.

oV PsSw2 Overflow flag.

-- PSWa User-definable bit.

P PSWO Parity flag. Set/cleared by hardware each instuction cycle

to indicate an odd/even number of 1 bits in the accumulator.

An Assembly language instruction consists of four fields:
(label:] mnemonic [operands] (;comment)

Brackets indicate that a field is optional, and not all lines have them. Brackets should not be typed in. Regarding the
above format, the following points should be noted.

1. The label field allows the program to refer 1o a line of code by name. The label field cannot exceed a certain number
of characters, Check your assembler for the rule.

2. The Assembly language mnemonic (instruction) and operand(s) fields together perform the real work of the pro-
gram and accomplish the tasks for which the program was written. In Assembly language statements such as

ADD A,B

MOV A, #67 ADD and MOV are the maemonics, which produce opcodes; and *A, B and “A, 167" are the operands.

MOV deatination, source ;copy source to dest.

8051 Data Types and Directives:
e Data Type in 8051 is of 8 bits.

Assembler Directives:

ORG (origin)

The ORG directive is used to indicate the beginning of the address. The number that comes after ORG can be either
in hex or in decimal. If the number is not followed by H, it is decimal and the assembler will convert it to hex.

EQU (equate)

This is used to define a constant without occcupying a memory location. The EQU directive does not set aside stor-
age for a data item but assoclates a constant value with a data label so that when the label appears in the program, its
constant value will be substituted for the label. The following uses EQU for the counter constant and then the constant
Is used to load the R3 register.

COUNT BQU 2%

When executing the instruction "MOV R3, 8COUNT™, the register R3 will be loaded with the value 25 (notice the
sign). What is the advantage of using FQL? Assume that there is a constant (a fived value) used in many different
places in the program, and the programmer wants to change its value throughout. By the use of EQU, the programmer
can change it once and the assembler will change all of its occurrences, rather than search the entire program trying to
find every occurrence.

END directive

Another important pseudocode is the END directive. This indicates to the assembler the end of the source (asm) file.
The END directive is the last line of an 8051 program, meaning that in the source code anything after the END directive
is ignored by the assembler.

DB (define byte)

The DB directive is the most widely used data directive in the assembler. It is used to define the 8-bit data. When
DB is used to define data, the numbers can be in decimal, binary, hex, or ASCII formats, For decimal, the “D" after the
decimal number is optional, but using “B” (binary) and “H” (hexadecimal) for the others is required. Regardless of
which is used, the assembler will convert the numbers into hex. To indicate ASCIL, simply place the characters in quota-
tion marks (‘like this’). The assembler will assign the ASCII code for the numbers or characters automatically

ORG SO00H
DATAL : DB 28 ;DECIMALI1C in hex)
DATAZ2 : DB 001101018 ;BINARY (35 in hex)
DATAI : DB 39H i HEX

ORG S10H
DATA4 : DB "2591" iASCI1 NUMBERS

ORG S18H
DATAS : DB "My name is Joe” ;ASC11 CHARACTERS

Either single or double quotes can be used around ASCII strings. This can be useful for strings, which contain a
single quote such as "O'Leary”. DB is also used to allocate memory in byte-sized chunks.

Addressing Modes in 8051

The various ways of accessing data by the CPU is known as Addressing
modes.

The five different addressing modes in 8051 are,

1. Immediate

2. Direct

3. Register

4. Register indirect
5. Indexed

MPES
Module 5 3

e 8051 Special Function Register

Name

Accumulator

=]

EOH

B register

:

Program status word

:

Stack pointer

x
=

1

Dhata pointer 2 bytes

Low byte

High byte

Port 0

Port 1

Port 2

Port 3

Interrupt priority control

lnm_plmnbhnmmn]

Temer / counter mode control

Timer S counter control

Timer / counter 2 control

Timer / counter mode control

Timer /counter O high byte

Thoner fcourther O low h!tt

Timer/ counter 1 high byte

Timer /counter 1 low b!rhe

HHG AR

Timer / counter 2 high byte

R

DH

Timer /counter 2 low byte

T/C 2 capture register high byte

£

T/C 2 capture register low byte

H

Serial control

Serial data buffer

Power control

1847

ROM in 8051:

8051 has 4K bytes of internal ROM. 000

Internal ROM of 8051 starts at 0000H and goes
upto OFFF H which corresponds to 4K. —

Externally if needed it can interface upto 64K bytes
of memory externally. But the total of internal and
external ROM should be equal to 64K bytes. ie, if
we are using internal ROM and external ROM then,
internal from 0000 H to OFFF H and external from
1000 H to FFFF H.

If only external ROM is used for total 64K bytes,
then EA pin should be kept low for that. if EA pin is
high then first internal ROM then remaining can be
external ROM.

AESOC 5]

FREF

[lvinaY

Sodrings
ﬁ:{'_‘lu

'

S RS

AL ey TYULTTLOES

Program Status Word in 8051 [PSW]:

The program status word (PSW) register is an 8-bit register. It is also referred to as the flag register. Although the
PSW register is 8 bits wide, only 6 bits of it are used by the 8051. The two unused bits are user-definable flags. Four
of the flags are called conditional flags, meaning that they indicate some conditions that result after an instruction is
executed. These four are CY (carry), AC (auxiliary carry), P (parity), and OV (overflow).

G lelr == [T

Y Isw7? Carry flag,

AC PSWé Auxiliary carry flag,

FO PSWS5S Available to the user for general purpose.

RS1 PSW4 Register Bank selector bit 1.

RSO I'SW3 Register Bank selector bit 0.

oV PsSw2 Overflow flag.

-- PSWa User-definable bit.

P PSWO Parity flag. Set/cleared by hardware each instuction cycle

to indicate an odd/even number of 1 bits in the accumulator.

An Assembly language instruction consists of four fields:
(label:] mnemonic [operands] (;comment)

Brackets indicate that a field is optional, and not all lines have them. Brackets should not be typed in. Regarding the
above format, the following points should be noted.

1. The label field allows the program to refer 1o a line of code by name. The label field cannot exceed a certain number
of characters, Check your assembler for the rule.

2. The Assembly language mnemonic (instruction) and operand(s) fields together perform the real work of the pro-
gram and accomplish the tasks for which the program was written. In Assembly language statements such as

ADD A,B

MOV A, #67 ADD and MOV are the maemonics, which produce opcodes; and *A, B and “A, 167" are the operands.

MOV deatination, source ;copy source to dest.

8051 Data Types and Directives:
e Data Type in 8051 is of 8 bits.

Assembler Directives:

ORG (origin)

The ORG directive is used to indicate the beginning of the address. The number that comes after ORG can be either
in hex or in decimal. If the number is not followed by H, it is decimal and the assembler will convert it to hex.

EQU (equate)

This is used to define a constant without occcupying a memory location. The EQU directive does not set aside stor-
age for a data item but assoclates a constant value with a data label so that when the label appears in the program, its
constant value will be substituted for the label. The following uses EQU for the counter constant and then the constant
Is used to load the R3 register.

COUNT BQU 2%

When executing the instruction "MOV R3, 8COUNT™, the register R3 will be loaded with the value 25 (notice the
sign). What is the advantage of using FQL? Assume that there is a constant (a fived value) used in many different
places in the program, and the programmer wants to change its value throughout. By the use of EQU, the programmer
can change it once and the assembler will change all of its occurrences, rather than search the entire program trying to
find every occurrence.

END directive

Another important pseudocode is the END directive. This indicates to the assembler the end of the source (asm) file.
The END directive is the last line of an 8051 program, meaning that in the source code anything after the END directive
is ignored by the assembler.

DB (define byte)

The DB directive is the most widely used data directive in the assembler. It is used to define the 8-bit data. When
DB is used to define data, the numbers can be in decimal, binary, hex, or ASCII formats, For decimal, the “D" after the
decimal number is optional, but using “B” (binary) and “H” (hexadecimal) for the others is required. Regardless of
which is used, the assembler will convert the numbers into hex. To indicate ASCIL, simply place the characters in quota-
tion marks (‘like this’). The assembler will assign the ASCII code for the numbers or characters automatically

ORG SO00H
DATAL : DB 28 ;DECIMALI1C in hex)
DATAZ2 : DB 001101018 ;BINARY (35 in hex)
DATAI : DB 39H i HEX

ORG S10H
DATA4 : DB "2591" iASCI1 NUMBERS

ORG S18H
DATAS : DB "My name is Joe” ;ASC11 CHARACTERS

Either single or double quotes can be used around ASCII strings. This can be useful for strings, which contain a
single quote such as "O'Leary”. DB is also used to allocate memory in byte-sized chunks.

Addressing Modes in 8051

The various ways of accessing data by the CPU is known as Addressing
modes.

The five different addressing modes in 8051 are,

1. Immediate

2. Direct

3. Register

4. Register indirect
5. Indexed

MPES
Module 5 4

Addressing modes in 8051:

The various ways of accessing data by the CPU is known as Addressing
modes.

The five different addressing modes in 8051 are,

Immediate

Direct

Register

Register indirect

Indexed

R WNRE

Immediate addressing mode

In this addressing mode, the source operand is a constant, In immediate addressing mode, as the name implies,
when the instruction is assembled, the operand comes immediately after the opcode. Notice that the immediate data
must be preceded by the pound sign, "#7. This addressing mode can be used to load information into any of the regis-
ters, including the DPTR register. Examples follow.

MOV A, #25H ;load 25H into A
MOV R4, #62 ;load the decimal value 62 into R4
MOV B, #40H ;:load 40H into B

MOV DPTR, #4521H ;DPTR=4512H

Although the DIFTR register is 16-bit, it can also be accessed as two 8-bit registers, DI'H and DPL, where DIPH is the
high byte and DPL is the low byte. Look at the following code.

MOV DPTR, #2550H
is the same as:

MOV DPL,#50H

MOV DPH, #25H

We can use the EQU directive to access immediate data as shown below.

COUNT EQU 30

MOV R4, #COUNT ;R4=1E(30=1EH)
MOV DPTR, 8MYDATA ;DPTR=200H
ORG 200H

MYDATA: DB "America”*

Notice that we can also use immediate addressing mode to send data to 8051 ports. For example, “MOV P1, #55R
is a valid instruction.

Register addressing mode

Register addressing mode involves the use of registers to hold the data to be manipulated. Examples of register
addressing mode follow.

MOV A, RO icopy the contents of RO into A

MOV R2,A ;copy the contents of A into R2

ADD A, RS 1add the contents of RS to contents of A
ADD A,R7 ;add the contents of R7 to contents of A
MOV R6,A j8ave accumulator in Ré

[tshould be noted that the source and destination registers must match in size. In other words, coding “MOV DPTR, A"
will give an error, since the source is an 8-bit register and the destination is a 16-bit register. See the following,
MOV DPTR, #25PSH

MOV R7,DPL
MOV R6,DPH

Notice that we can move data between the accumulator and Rn (for n = 0 to 7) but movement of data between Rn
registers is not allowed. For example, the instruction “MOV R4, R7” is invalid.

Direct addressing mode

In the direct addressing mode, the data is in a RAM memory location whose address is known, and this address is
given as a part of the instruction. Contrast this with immediate addressing mode, in which the operand itself is provided
with the instruction. The “#” sign distinguishes between the two modes. See the examples below, and note the
absence of the “#” sign.

MOV RO, 40H ;save content of RAM location 40H in RO
MOV S6H,A ;eave content of A in RAM location S6H
MOV R4,7FH imove contents of RAM location 7FH to R4

Regarding direct addressing mode, notice the following two points: (a) the address value is limited to one byte,
00 - FFH, which means this addressing mode is limited to accessing RAM locations and registers located inside the
8051.

Stack and direct addressing mode

Another major use of direct addressing mode is the stack. In the 8051 family, only direct addressing mode is
allowed for pushing onto the stack. Therefore, an instruction such as “PUSH A" is invalid. Pushing the accumulator
onto the stack must be coded as “PUSH 0E0H” where OEOH is the address of register A. Similarly, pushing R3 of bank (
is coded as "PUSH 03", Direct addressing mode must be used for the POP instruction as well. For example, “POP 04"
will pop the top of the stack into R4 of bank 0,

Register indirect addressing mode

In the register indirect addressing mode, a register is used as a pointer to the data. If the data is inside the CPU, only
registers R0 and R1 are used for this purpose.

MOV A,@RO ;move contents of RAM location whose
;address is held by RO into A
MOV @R1.B imove contents of B into RAM location

;whose address is held by Rl

Notice that RO (as well as R1) is preceded by the “@” sign. In the absence of the “@" sign, MOV will be interpreted
as an instruction moving the contents of register RO to A, instead of the contents of the memory location pointed
to by RO,

Limitation of register indirect addressing mode in the 8051

As stated earlier, R0 and R1 are the only registers that can be used for pointers in register indirect addressing mode.
Since RO and R1 are B bits wide, their use is limited to accessing any information in the internal RAM (scratch pad
memory of 30H - 7FH, or SFR). However, there are times when we need to access data stored in external RAM or in the
code space of on-chip ROM. Mﬂmumﬂvmled RAM or on-chip ROM, we need a 16-bit pointer,
In such cases, the DIFTR register is used

Indexed addressing mode and on-chip ROM access

Indexed addressing mode is widely used in accessing data elements of look-up table entries located in the program
ROM space of the 8051, The instruction used for this purpose is “MOVC A, @A+DPTR". The 16-bit register DPTR and
register A are used to form the address of the data element stored in on-chip ROM. Because the data elements are stored
in the program (code) space ROM of the 8051, the instruction MOVC is used instead of MOV. The “C" means code. In
this instruction the contents of A are added to the 16-bat register DPTR to form the 16-bit address of the needed data,

Example

The word “SAM" is to be burned in the flash ROM location starting from 0400H of an ATS9C51. Write a program
to do this and to read this data into internal RAM locations starting from 60H.

Solution:
CRG O00OH iprogram starts at location 0000H
CLR A 1 A=0
MOV DPTR, #0400H ;DPTR=400H (points to first source location)
MOVC A, ®A+DPTR jget 'S8' from location 400H

MOV &0H,A jmove it to RAM location 60H

Assuming that ROM space starting at 250H contains “America”, write a program to transfer the bytes into RAM
locations starting at 40H.

Solution:

1{a) This method uses a counter
ORG 0000
MOV DPTR, #$MYDATA 1lcad ROM pointer
MoV RO, #40H iload RAM pointer
MOV R2,#7 ;load counter

BACK : CLR A A = 0
MOVC A,@A+DPTR ;move data from code space
MOV @RO.A jsave it in RAM
INC DPTR ;jincrement ROM pointer
INC RO ;increment RAM pointer
DINZ R2,BACK ;loop until counter«0Q

HERE: SJMP HERE

i ==========On-chip code space used for storing data
ORG 250H

MYDATA DB "AMERICA"
END

Example

Lumple

Write a program to get the x value from I"1 and send »° to I'Z, continuously.

Solution:
CRG O
MOV DPTR,#300H iload look-up table address
MOV A, 4OFFH 1A=FF
MOV P1,A reonfigure Pl as input port
BACK MOV A P1 iget X
MOVC A, 8h+DPTR :get X sgquared from table
MOV P2,A :isgue it to P2
BEJMP BACK jkeep doing it
CRG 300H
X5QR TABLE:

5]} 0,1,4,9,16,25,36,4%, 64,81
ERD

Motice that the first instruction could be replaced with "Mov DPTR, #xsQrR TABLE"

External data ROM has a look-up table for the squares of numbers 0 - 9. Since the internal RAM of the 8031/51
has 2 shorter access time, wrile a program o copy the table elements into internal RAM starting at address XIH

| The look -up table address starts af address 0 of evternal ROM.

Solution:

TABLE EQU Q0DOH

RAMTELE BQU 30H

COUNT EQU 10
MOV DPTR, ATABLE ;jpointer to external data
MoV RS, 8COUNT jeounter
MOV RO, #RAMTBLE ;pointer to internal RAM

BACK: MOVX A,&DPTR ;get byte from external mem
MoV &RO, A ;store it in internal RAM
INC DPTR ;next data location
INC RO jnext RAM location

DIJNZ RS,BACK suntil all are read

Thank You

MPES
Module 5 5

J ports in 8051.:

* 8051 has four 8 bit bidirectional ports, ie, 32 |/O pins.

* Port O, Port 1, Port 2, Port 3

* All ports upon reset is configured as output port.

Port O:

e Designated as ADO to AD7

* Port address (SFR) is 080 H.

* Port O can be used for Address/ Data when connected to an external memory.
* For memory addressing, the lower byte of 16 bit address is in PO.

* When used as an output port, Port O needs as external Pull up resistor to sourcea high
value to the output circuit.

 When used as an output Port, whatever value comes in the port 0 SFR latch will be given
as the output.

 When external memory is accesed Port O (input) does not need a Pull up resistor.

Port O Internal Structure:

To work Port 0 as output port, Write the latch
(SFR) of port O with zero, so that what wver
comes at the latch can be given as output since
the lower N channel FET is in on state. (refer
second fig.) By default, ie, without external puul
up resistor ,it can't source high output value.

To make Port 0 as an input port, write a '1' to the
port O SFR, which will turn off the lower N
channel FET . This will make pin in the high
impedance or floating state.(refer first fig.) So
that whatever value sourced by the external
circuit can be read by activating 'Read Pin'.

Ports 1,2 and 3 have internal pull ups.
Bit addressing of Port O is possible.

Port O is known is True bidirectional port as it
floats or at high impefance state when configured
as input port.

Read Latch

Internal
| } " -
{ I.“._ ,. I - j’l l"l

-A

Write to latch — IClk Q |1 Ml

N T

Read pin

1|!|.'\.
Read lakch 7
& External
pull-up

fesisior

Internal

)X
CPL bus

F'Irl

i‘ l'l| ¥ ¥

|=|"|.'J:|1' '.|.||.I.I|. n i L1k i) | ""-1

Read pin - T8l

Fig. Internal structure of each Port O pin with and without
external Pull up resistor.

Port 1 Internal Structure:

8 bit Bidirectional Port which is used only for I/O operations.

Does not need external pull up resistor as it have internal pull
ups.

Bit addressable.

Writing '1' to SFR latch turns off the lower N cahnnel FET and
makes the pin suitable for input operations.

To make it as an output port , whatever comes in latch can be
given as output.

Now what happens when we write a '0' to the port pin by
mistake which is actually configured and wired as an input?

To solve the above problem connecta current limiting resistor
to the external Vcc.

When configured as input port, Portl, 2 and 3 will pull the
status of the pin to high due to its internal pullup resistors so
that it will source currents when externally pulled low. Due
to this property Port 1, 2 and 3 are known as Quasi
Bidirectional.

CPL P1.2 is a instruction which read the Port latch,
compliments it and then written back to latch.

Head latch
182
Indermal
CPU bus —1 L Q1
r-x
Wirite o latch —4 Ck O}
Rt pif - (Bl
Read Ladch .
L TR
Internal :
i |||: h'|'\ * 1 :I I_"I ¥
P’l-X
i rane 1o laich i {1k ||‘| ;

| | Load (L1)
T -
M
Ill'hl.
Load (L1}
\ -
¥ "
'l X
I|III.II ||:

IKead pin -

Pl-X
|_-.l.|

¢ Vie

will damage M)

Port 2:

* 8 bit Bidirectional 1/O port

* Time multiplexed between Higher order
address and data.

e Similar port structure to Port 1.
* Bit addressable
* No need of external pull ups.

Port 3:
* 8 bit bidirectional I/O port.
* Bit addressable

e Alternate functions in addition to normal I/O
operations.

* No need for external pull ups.

Port 3 Alternate Functions

I3 Bit Function Pin
3.0 RxD 10)
3.1 I'xD 11
3.2 INTO |2
[’3.3 INTI 13
i'*1_l 10 1 4
["3.5 I 15
3.6 WR 6

1"3.7

RD

Thank you

MPES
Module 5 6

Machine Cycle in 8051:

* The Smallest interval of time to ccomplish any simple instruction, or part
of a complex instruction is called Machine cycle.

A Machine Cycle is made up of 6 states. One machine cycle is 12 clock
cycles.

e A State is the basic time interval for discrete operations of the Micro

controller such as Fetching, Decoding and Executing an opcode or
writing a data byte.

* Two oscillator pulses, two cycles, define a state.
* Program instructions may require one, two or four machine cycles to get

executed depending on the type of the instruction.

1

Time for one Machine cycle = X12
f Y clock frequency

Contd...

P2

P1

P P2

P

P2

Oscillator

Frequency
f

A ddress Latch
Enable (A LE)

As in the figure there are two ALE pulses per Machine cycle. The ALE pulse is used as atiming pulse
for external memory access, indicates when every instruction byte is fetched. thus two bytes of a
single instruction can be fetched in one machine cycle. But single byte instructions are not executed

State 1

Ctate 2

State 3

One M achine Cycle

State 4

State 5

State g

in half cycle. ie, the second ALE pulse is discarded for single byte instruction.

Timers and Counters in 8051:

* Two 16 bit up counters named Timer O and Timer 1 are in 8051.

* Each can be programmed to count internal clock pulses for generating time
delay as a Timer and external events as a Counter.

e Each Timer is divided in to two 8 bit registers called TLO and THO for Timer O and
TL1 and TH1 for Timer 1.

* All Timer / Counter actions are controlled by the bit states in the Timer Mode
Control Register TMOD and Timer / Counter Control Register TCON along with
certain Program instructions. Four modes of operation are there.

* Timer increases by one in every Machine cycle.ie, in every 12 clock cycles.
« Therefore the frequency of the Timer is always o= of oscillator frequency.

1

* As an example, for a crystal frequency of 12 Mhz, Timer frequency is - x12mhz = 1Mz

= 1 Micro sec

Therefore time for one count is i
&

TMOD Register
e TMOD is not Bit addressable.

IMSB) {LSH)
GATE C/T M1 MO GATE C/T M1 MD
Timer 1 Timier O [THO . e :
lnuslma]nnlmzlmnf_nm[m[m![w[mlm[D-qlmll:-;ilm[m]
GATE CGating control when set. The timer/ counter is enabled only while the INTx pin Timmer 0 Registers
i high and the TRx control pin is set. When cleared, the timer is enabled _— —
whenever the TRx control bit is set. I Y = I
PRURE ~csterisamnes Sk R IR [evs [v [[| o | o] o [o [[s [[o [o]
svstem clock). Set for counter operation (input from Tx input pin), Tome X Mamhiines
M1 Mode bit |

Mo Maode bit 0

ML M0 Mode Operating Mode

] 0 0 13-bit timver mode
B-bit timer /counter THx with TLx as 5-bit prescaler

] 1 1 16-bit timer mode
16-bit timer /counters THx and Tlx are cascaded; there is
no prescaler

i o 2 #-bit auto reload

8-bit auto reload timer / counter; THx holds a value that i
to be reloaded mto TLa each time it overflows,
1 1 3 Split timer mode

T™MOD

TCON Register:

D7

0

™1 | TR1

TFO TRO IEl IT1 IEQ ITD

Z

3

TOCUNO

Timer 1 overllow flag. Set by hardware when mer /counter |
overflows. Cleared by hardware as the processor vectors to
the inberrupt service routine.

Timer 1 run control bit. Set/cleared by software 1o bum
timer /cownter 1 on/ off.

Timer 0 overflow flag. Set by hardware when timer foounter 0
overflows. Clearnsd by hardware as the processor vectors to
the servior routine.

Timer 0 run control bit. Set /cleared by software o tum
timer /S counter O on/off.

External interrupt | edge flag. Set by CPU when the
external interrupt edge (H-to-L transition) is detected.
Cleared by CPU when the interrupt is processed.

Note: This flag does not latch low-level

triggered interrupts.

Interrupt 1 type control bit. Set/cleared by software to
specity falling edge /low-level triggered external interrupt.
External interrupt 0 edge flag. Set by CPU when external
interrupt (H-to-L. transition) edge is detected. Cleared by CPLU
when interrupt is processed. Node:This flag does not

latch low-level mggered interrupts.

Interrupt 0 type controld bit. Set/cleared by software to specify
falling edge / low-level triggered external interrupt.

TCON (Timer/Counter’ Register (Bit-addressable)

Timer / Counter Control Logic using GATE bit:

XTAL -

. |
OSCILLATOR | | /=0

R, g T

Gate [4DJ

TN Pin J
P 3l

XTAL

OSCILLATOR

+12

—ﬂffﬂ}—
C/T=1
T1IN

Timer/Counter 0

Pin 3.5
TR1 3
g
[,
Ciate | == ‘—Di
INT1 Pan
Pin 33
Timer'Counter 1

Thank You

MPES
Module 5 7

Timer Mode 1 operation:

1. Itis a 16-bit timer; therefore, it allows values of 0000 to FFFFH to be loaded into the timer's registers TL and TH.
2. After TH and TL are loaded with a 16-bit initial value, the timer must be started. This is done by "SETE TR0" for

Timer 0 and “SETB TR1" for Timer 1.

3. After the timer is started, it starts to count up. It counts up until it reaches its limit of FFFFH. When it rolls over
from FFFFH to 0000, it sets high a flag bit called TF (timer flag). This timer flag can be monitored. When this timer
flag is raised, one option would be to stop the timer with the instructions “CLR TR0" or “CLR TR1", for Timer 0
and Timer 1, respectively. Again, it must be noted that each timer has its own timer flag: TF0 for Timer 0, and TF1

for Timer 1.

4. After the timer reaches its limit and rolls over, in order to repeat the process the registers TH and TL must be

reloaded with the original value, and TF must be reset to 0.

XTAL
oscillator

JLIL
}- TH | TL —{TF
| TF goes high overflow
TR when FFFF 0 flag

Steps to program Timer in Mode 1:

1. Load the TMOD value register indicating which timer (Timer 0 or Timer 1) is to be used and which timer mode
(0 or 1) is selected.

2. Load registers TL and TH with initial count values.

Start the timer.

Keep monitoring the timer flag (TF) with the "ONB TFx, target™ instruction to see if it is raised. Get out of the loop
when TF becomes high.

Stop the timer.
Clear the TF flag for the next round,
Go back to Step 2 to load TH and TL again.

= -

N,

In the following program, we are creating a square wave of 50% duty cycle (with equal portions high and low) on
the P1.5 bit. Timer 0 is used to generate the time delay. Analyze the program.

MOV TMOD, #01 ;Timer 0, mode 1{16-bit mode)
HERE : MOV TLO,WOF2H ;TLO = F2H, the Low byte
MOV THO, #0FFH iTHO « FFH, the High byte
CPL P1.S ;toggle P1.5
ACALL DELAY
SJMP HERE iload TH, TL again
DELAY:
SETB TRO jstart Timer 0
AGAIN: JNB TFO,AGAIN ;monitor Timer 0 flag until
14t rolls over
CLR TRO ijetop Timer 0

CLR TFO ;jelear Timer 0O flag
RET

1

2 FFFIHi:lnal:hdm'l'Hﬂ TLO.

3. Pl15is toggled for the high and low portions of the pulse.

4. The DELAY subroutine using the timer is called.

5. Inthe DELAY subroutine, Timer 0 is started by the “SETE TRO” instruction.

6. Timer () counts up with the passing of each clock, which is provided by the crystal oscillator. As the timer
counts up, it goes through the states of FFF3, FFF4, FFF5, FFF6, FFF7, FFFS, FFF9, FFFA, FFFB, and so on until
it reaches FFFFH. One more clock rolls it to 0, raising the timer flag (TFO = 1). At that point, the INB instruc-
tion falls through.

7. Timer 0 is stopped by the instruction “CLR TR0". The DELAY subroutine ends, and the process is repeated.

Notice that to repeat the process, we must reload the TL and TH registers and start the timer again,

O Oa O OO

TF=0 TF =0 TF=1

In Example ﬂmwhm&md&ymhﬂﬁqumedbrﬂmhm*m&at
XTAL = 11.0592 MHz.

Solution:

The timer works with a clock frequency of 1/12 of the XTAL frequency; therefore, we have 11.0592 MHz / 12 =
921.6 kHz as the timer frequency. As a result, each clock has a period of T = 1 / 921.6 kHz = 1.085 ps. In other
words, Timer 0 counts up each 1.085 ps resulting in delay = number of counts = 1.085 ps.

The number of counts for the rollover is FFFFH = FFF2H = 0DH (13 decimal). However, we add one to 13 because

of the extra clock needed when it rolls over from FFFF to 0 and raises the TF flag. This gives 14 x 1.085 ps =

15.19 ps for half the pulse. For the entire period T = 2 x 15.19 ps = 3038 ps gives us the time delay generated by
the timer.

(a) in hex (b} in decimal

(PPFF - YYXX + 1) x 1.085 pus Convert YYXX values of the
where YYXX are TH, TL initial |[|TH,TL register toc decimal to

values respectively. Notice get a NNNNN decimal number,
that values YYXX are in hex. then (65536 - NNNNN) x 1.085 us

Timer Delay Calculation for XTAL = 11.0592 MHz

To find the Values to be loaded in to Timer in mode 1:

Assuming that we know the amount of timer delay we need, the question is how to find the values needed for the
TH, TL registers. To calculate the values to be loaded into the TL and TH registers look at Example ~ where we use

crystal frequency of 11,0592 MHz for the 8051 system.
Assuming XTAL = 11,0592 MHz from Example 9-10 we can use the following steps for finding the TH, TL registers’

values.

1. Divide the desired time delay by 1.085 s.

2. Perform 65536 - n, where 1 is the decimal value we got in Step 1.

3. Convert the result of Step 2 to hex, where yyxx is the initial hex value to be loaded into the timer's registers,

i SetTL=xxand TH=wy

Example

Assume that XTAL = 11.0592 MHz. What value do we need to load into the timer’s registers if we want to have a
time delay of 5 ms (milliseconds)? Show the program for Timer 0 to create a pulse width of 5 ms on 2.3,

Solution:

Since XTAL = 11.0592 MHz, the counter counts up every 1,085 ps. This means that out of many 1.085 ps intervals
we must make a 5 ms pulse. To get that, we divide one by the other. We need 5 ms / 1.085 ps = 4608 clocks. To
achieve that we need to load into TL and TH the value 65536 - 4608 = 60928 = EEDOH. Therefore, we have TH = EE

and TL =00,

P2.3
TMOD, #01
TLO, %0
THO , $0EEH
P2.3

TRO
AGAIN: TFO, AGAIN
P2.3

TRO

TFO

AT E

jclear P2.3

;Timer 0, mode 1 (16-bit mode)
;TLO = 0, Low byte

;THO « EE(hex), High byte
;8ET P2.3 high

;etart Timer 0

;monitor Timer 0 flag

;until it rolls over

iclear P2.3

;8top Timer 0

iclear Timer 0 flag
ireload timer

Thank You

3/13/2021

Timer Mode 2 Programming in 8051:
8 bit Timer, with auto reload feature. Used for Baud rate setting in serial communication.
| E o T B, il ey e 100 e F b bl 80 i s b (B
T T b i i g T sy o o T i e il Tl
MPES b by i e T e b P i o o T Th e e
B e e e T g ey
umh-—q—mlnﬁlnnﬂhﬂnlﬂll--nf—l T s g

MOdUIe 5_8 oo g T . 1T i il

Fha b 11 g vobie b 0] i 17 e 11 il e e o B il 1
by o T g [i s, e s 11 s e e eyl by i
EARA b mbad By mged 1 Tl pekes mek | @ skl B sl be i
ramm b b il [1L

P L e
A
e R e e e e T e e A
i i, - —
. —— —_—
. i s e P e | w1 T e e
U s M R T D N T i s o 2 bl o =miaom ek
A -
b s i, - ¥ W
i, SREEES ST - = - - R i —
= mEE e B
I S P e P e 11 - S 2 0 M e i gy —
s o e | AR, B S s L . = e [T B
- i G e - — Ak~ i oy 1Y
= e 1y — e
— = ol e man
— - o ———— m g jom—
T e - e g whama | w
Wl H] == ™ g |
= s g = . s |
FOT e e
= LT e | e b B —E T
B ety —tre—— i e bl 7] =] e T
] I TR L Rk b Bt i - L e Bt
T e e camae = — -
s -k —
= —— E— —— =
[T e s

* TO and T1 pins, ie, P3.4 and P3.5 respectively are used to connect the
external events.

* In comparison to Timer operation, here the clock source is from external
events. Otherwise similar to timer only.

« 1/24th of the crystal frequency is the maximum count rate that can be Thank You
achieved without loosing accuracy as it needs two machine cycle to sense
the changes by the micro controller.

* The change in external input ie, in pins TO and T1 should hold for atleast
one machine cycle.

3/13/2021

MPES
Module 5_9

Basics of Data communication:
to parallel I/O devices such as Printers, DAC etc.
is widely used for long distance communication.

line.

« The data byte is always transmitted with the least significant bit first.

the same time.

+ 8051 is a parallel device that transfers eight bits of data simultaneously over eight data lines
« Parallel data transfer over long distance is very expensive, hence Serial data communication

* In serial data communication, one bit of information , ata time is transferred over a single

* Serial communication in 8051 is Full Duplex in nature, ie, data is transmitted in both ways at

Types of Serial Data communication:
Synchronous Serial Data Communication:

* In which Transmitter and Receiver are synchronised with the common
clock signal.

Asynchronous Serial data Communication:
* In which different clock sources are used for transmitter and receiver.
« Data is transmitted using Start and Stop bits.

+ Transmision begins with start bit, then data and end with the stop bit.

Serial Port in 8051:

« Full Duplex Serial communication using TxD (P3.1) and RxD (P3.0) pins.

* RS232 1/0 interfacing standard is used. Where '1' is represented using -3 V to -
25V and '0' is represented by 3 V to 25 V. MAX 232 drivers are used to
interface it with TTL compatable devices.

« 8051 uses SBUF register to hold data during Serial communication.

* SBUF is physically two registers. One is write only used to hold data to be
transmitted out and the other is Read only used to hold the received data .
Both mutually exclusive registers can be accessed using same address 99 H,
differentiated with the help of instruction, for transmit or receive.

* Four modes of Serial communication in 8051, selected with the SMx bits in
SCON register. [Serial Port Control]

« PCON is another special function register used to control data rates.

SCON Register:

LT
L
i
TR
EE EIN

|} T L= !

B et Pt e B (B St

3/13/2021

Baud Rate : i ;
o o - = e
* For Synchronous data communication, Baud rate is Bits/ Second. .
b=
* For Asynchronous Data communiaction, Baud rate is the reciprocal of the time to send one — -
bit, because the data is preceded by a start and followed by a stop bit. it need not be equal .
to the bits/ second always.

* For error free communication, the baud rate , no. of data bits, No. of start and stop bits,
presence or absence of parity bit etc should be same for Transmitter and Receiver.
[T ——— m_,?“lllﬂ'ﬁb=ﬁm W
For 2 mary e e e e e By oy e -

s —— e s o W -

b e o e, s, e B i B s i P Rkt i

-—|—|-|_-":-_i.-: —1—-: TN Vb i Visskis Based i v i - T b
- S e b e Py = o i o o] VY Y 1T Tl W TR
ok e B 0 e 1 e s e P B 8 e i B W e | b i
gt e i i e e Y sl P]l i T
R [T R sy - | = Tl bl | s T
B ST - b -0 - B o kb i (100

PCON Register:

* By default SMOD bit is Zero. Using program we can make it as '1' to
double the baud rate.

[T T T [En = [m T =

I Thank You

oy - | sl Ml Dimmpurtonms st BRI = 8w WO = |

s
TH| i Ewimal i AMGIsE AMEHIE |
] [[[LE)
e L] EL) L
= Lo L L
™]]

3/13/2021

MPES
Module 5_10

Steps to Program 8051 to transmit serial data:

| - L] i Vo |
e

T T TH G s v e i [e S S L P S R R SRR
HEal 4 be A Wbl

i i i e S b
e

e —

L

W T i b Bt LT 1 i

e . e p—,

T T Tl g . i s a0 i
e

-

e P e e Vb R e o e £

e
= I = ==y
=
8 == 1]
a5 Fd new i
R e A s e O
- i e ——
g -n-.uur-
:- -uui.qu".-l .
i = L—
[, mmal e — e | ——
el
[———y
= &5
e mEm
A -
.l—-—q-ﬁ-
. = o Hl.l....nuuu_—
CE - T B i T
= - Rl B R T

Importance of Tl Flag:

By ot e T e, e ke st e, o o, e ML g v e sl e
e the SOLIF g o T b .t s gt f e prvwes ot sl b Lt B e
o, bttt BB oo e iy, o s s T1 g i i ey et ot charate,
i SBLF ol i o T g il ol iy i 20 T i i o
-

Steps to Program 8051 to Receive data Serially: E‘ r—rw=y-
i i —_— - el b e B e T
bl —
: Py - AN S | R R
B T TR i -] Ju-lu'q |
e e ek sk - 0 rn-it__-
B TEIm b s o s
me HI e il
] Cinal e =1 - - -q-.:l A —
L 'Il-ll‘i e o= a b LU L =_ r :m B
ol — T e e
B b e . -

B e e i Sy

Importance of Rl Flag:
R R B e e T e S S PR o e R PEL LR T

e inupy e B —— L g
Pl N e o A 4 il i
o sl r -y L

3/13/2021

3/13/2021

MPES
Module 5_11

LCD Interfacing to 8051:

T L
me m i
¥ig
mrE—r
Buwp e
ma— |
r
1

Programming LCD using Time delay:

)l W LAY ! . —
TR R ey Sy
M e g

i, — W e

P R m— gt o

FliH

1L
by |
il
i

e
i 1L
it
[

VERESINEPRENT REppEdN

PR
LI

i

ik

i
I
B

:

IFry 2
THIE

v v
.
o Rl S
rrimy i —

LCD programming using Busy flag:

1 e el i il Gl e
1Pisidy w8 SN A M .
-

11
IIEI
i

i

'I:!:}:IEI’I’I’I
I-I-Irl
1

vl L B b S —

ki
[o -
= o
s —
=5 My b e b
= s p—
= et s .
= - ——

-

— — .
. na —
- e o ——

= em e

- o AL b e
e
-

-
-
-

Timing diagram for Read / Write operations:

i Y e] ——

™
i e i i e

m.r.mn. nkg hhlﬁ_-ru——l-u.:lh

3/13/2021

Thank You

3/13/2021

MPES
Module 5_12

ADC Interfacing with 8051:

The resolution of the converter is the minimum
analog value that can be represented by the
digital data.

If the ADC gives n-bit digital output and the full
scale analog input is X volts, then the resolution is
1/2" x X volts.

g
o Tt W | W ity .
Bl ™ == ”
NE e i
TR
it = Y T e
P —

- Timing diagram for ADC:
i e L LI
- I I
mEe ™~ —
el —I_-I
ELL -
e - +
(TS - |_:_|
LAFus L
Ll em
IR 1 B LT T A DT o
Taientig e | [mey
1 b i bl P S g b R W il e 1 g [k 114 = s ol
1 aLp P b s L | i e e i, e g [e T
’ i, o v
i o AL i L] il 1 e | B ke e Mol i b = u
ropeigel el sy B B @ W iy i |k ooy bt am =
i T ey [T il Ll jp AT
T i e e o e PT po aiie 1 hopn =
L] L] o A, e Ber b e S W el g i gk
B T e - - — T —H
A SRR . = .
L i e it p—— - - iy e - iy —
l—'.---_— L — - - s e
SIAL A wil
- b i Tl reas mmas
s & B -

3/13/2021

Thank You

3/13/2021

DAC Interfacing to 8051:
 Used to convert digital signals to analog signals.
« Conversion is done with R/2R ladder network logic.

MEBES T ey e —— g
= ES i A
Modula 5_13 {3 i
* The number of output levels that an n bit input DAC can produceis2 "

« The DAC requires a reference analog voltage (Vref) or current (Iref) source. The
smallest possible analog value that can be represented by the n-bit binary code
is called resolution. The resolution of DAC with n-bit binary inputis 1 /2" of
reference analog value. Every analog output will be a multiple of the resolution.

DAC Interfacing:

Thank You

Ll

3/13/2021

Stepper Motor Interfacing with 8051:

MPES
Module 5_14

« Stepper motor translates electrical pulses to mechanical movement, used for
position control.

* Examples are in Robotics, Dot matrix printers, Disc drives etc.

« Stepper motors generally have a permanent magnet rotor (shaft) and stator
surrounding it. There are variable reluctance type stepper motors also.

* The rotor of stepper motor runs in precise steps.

« Step angle is the minimum degree of rotation associated with a single step.

« Steps per revolution is the total number of steps needed to rotate one
complete revolution or 360 degrees. ie, if there are 180 steps per revolution

means each step is of 2 degrees.
* Unipolar, Bipolar and Universal configurations, 6 terminals, 4 terminals and 8

terminals respectively.

P .

when coil A s energised

varmpir

[ewrroien L P | cymmastim it sowpyees s i |igrw el coals & poogeen i vl B sy

e TR i

1 b il B el ol e

[T | [pe———

3/13/2021

8051 Programming in 'C' :
Wery Perwgromn il W1 in O7
il prabmn - B -
1 - " e B Bl y
MPES . bl i
By g oy e] - e =t
m‘_“ :lllmlm Fr'lhm;-_mqnl.—tm--r:m H:;-nnhl:
e b g Ve ep vl Vb imange 1 LT
i e o e
B e e T S o
Il s g
A e e e e e b —
A Lk A e e B Sl A S LA
Data Types in 8051 C Programming:
ate e n —
= . : s — as v - T e v -
——— T - PPE B n e o S s il e i g W R
— o e L e T e B ey O iy o Bl i
-H—h#hudh_ﬂuu! e e e e i - Tibla
g
P i] el e oL e = el A L,
e [P —— g i W=l
. —
R g - e
Tia et 2 L ——y — e - — el = i SR
= P __-:_.__;:-_..______._. : :; ;______'
Paie = = [="‘hﬁ,ﬁ.—.
e e - - —
S g T =
= RE S —g—
- --_.. 1 e
[Py 1
bt
L e ———a—r— L — - —a e
——
— T it ot
-r . =|-H-—- b=
l—_h.lllq:-:-n 1
1 s e
s oo L i g frsrp—

3/13/2021

bt e B L P T i B B | B
= =g e et
—
AT LA i g ot T S T
- L amdeeh e dbmite BEE b deiimbied -9 -
mE mg Y =-.-||—.—.——,
e
e]
‘T:r; A -r--'I- : T bbb
) 1
B T T
III.:lr-w-- |
I W
i A
--rr—-.—l-n-m--
=|-—....
R T
{ P
[l _
[y y—r—— = 3 T .
et
Wi ey
iy T
A EAERl - BTN Glhik A e b Seen B ke
[T T A e W e
Ve g e—
o s ; Thank You
-lll-l--lllI !
— diwe & Bin e i
[ETTE TR ™ Y R
i
i

3/13/2021

MPES
Module 5_16

Embedded System:

An Embedded system is a system that has a software embedded in to a computer
hardware for doing a dedicated task. It may be an independent system or a part
of large system.
Eg: Mobile phones, TV remotes, Printers etc.
Characteristics of Embeddded systems:

« Reliability

* Cost effectiveness

* Low power consumption

« Fast execution time

« Efficient use of memory

* Processing power is more

CPU of the embedded system can be Micro processor, Micro Controller or DSP or any
Application Specific Processor (ASP).

Application Domain of Embedded Systems:

* In every element of modern day life, we could find an application of
Embedded systems. Following are a few among them,

+ Consumer electronics: Mobile phones, Digital cameras, Printers, Washing machines,
Remote controls, Toys etc.

* Home security systems: Intruder and Fire alarm system etc

Automobile: Anti lock Braking (ABS), Engine control unit, Electronic fuel injection,Door
and wiper controls etc.

Medical equipments: Scanners, ECG and EEG, Testing and monitoring equipments.
Banking: ATM, Currency counting machine etc.

* Networking: Routers, Switches etc.

Factories: Control, Instrumentation and Alarm systems.

The list is incomplete and we could new domains for embedded system applications every where.

Features and characteristics of Embedded systems:

* It should perform one or a small number of dedicated functions efficiently.
* Low power consumption as most devices are battery powered.

« It should have limited number of memory and peripherals.

« Application is not supposed to get altered by the user.

* Many of them are not directly accessible as it may be a part fo the large
system.

* It should be highly reliable.

* Many of the need to operate with time contraints (Speed of response).
* Physical size is a constraint for many systems.

* Code size is another constraint for many systems.

Current Trends:
* Multi-core processors:

It has become very clear that trying to improve processor performance by increasing clock frequencies
is fraught with difficulties, because the direct result of higher clock frequency is high power dissipation. Thus,
the option of using more than one processor core (at lower clock frequencies) is being tried out. Thus, the
current smart phones and gaming consoles use multi-core processors.

* Embedded and real-time operating systems:

With the of complex many new and real-time operating systems
have become popular. Linux has emerged as a popular embedded 0S, and others like Android and newer
versions of Symbion have came up for mobile applications and handheld devices.

- Newer areas of deployment of embedded devices:
Embedded devices have applications in the entertainment, healthcare and automotive segments.

Besides that, there are applications in the communication and military fields as well. Research and development
in these fields is going ahead.

Thank You

3/13/2021

Real time Task:

* It is a task in which the performance is judged on the basis of time.

+ It means that the result of computation is 'correct’ only it has produced
the correct output within the specified time constraint, failure to that is
considered as a system failure or as a reduced 'quality of service'.

* Process control systems in Industries, Weapon guidance system, Air traffic

control, Anti lock braking systems etc are few examples for Real time
systems.

* All embedded systems are not Real time systems, eg. Printer, Mobile
phones etc.

Types of Real time tasks:
+ Hard Real time systems:

In Hard real time systems the failure to meet the time deadline is a fatal
fault. Eg. Air traffic control, ABS etc.

* Soft real time systems:

Breaking the time deadline is unwanted, but not immediately critical.
Eg. Navigation systems
* Firm Real time systems:

If the deadline is missed occassionally, the system won't fail. The results
produced after the deadline is discarded.

Gaming console etc can be an example.

Real time operating systems [RTOS]:
Characteristics:

* Time constraints

« Correctness [logical and Time]

* Task scheduling

« Safety and Reliability

« Task Criticality - Cost of failure of task.

* Custom hardware

* Responsive and reactive

* Stable

* Exception handling

Eg. RT Linux, Vx Works, Windows NT, Solaris etc....

3/13/2021

Embedded Product Development Cycle [EDLC]:

* Itis an Analysis - Design - Implementation based problem solving approach for
Embedded product development.

« First analyse what product is to be developed, next to find the good the design

MPES to build it and finally to Implement or develop it.
* EDLC is essential for understanding the scope and complexity of the work
Module 5 18 involved in any embedded product development.

Objectives of EDLC:
* Ensure that high quality products are delivered to end user.

« Risk minimisation and defect prevention in product development by project
management.

* Maximise the productivity.

Different phases of EDLC: EDLC Models:
Water fall or Linear Model:

« The life cycle of product development
is commonly reffered to as models. n n_ * In this model or approach each phase of EDLC is executed in sequence.

*The classic embedded life cycle E i T * In linear model each phases are well documented, which gives a clear insight
management contains the phases, . -l- to what to be done and how it is to be done in the next phase.
NeeFi - Conceptualisation - Analysis - 'i' . = « One significant feature in linear model is, even if a fault is identified in a phase,
De5||gn - Development and TESZ"E - . the corrective measures is not done immediately as there is no feedback
Deployment - Support - upgrades - - I il given in the model.
Reti ’ . I)
etirement/disposa l' _H, * Good documentation, easy project management, Good control over cost and
el schedule.
s e — EF, * Well suited for the product development where the requirements are well
defined and within the scope, no changes are expected till the end of the
cycle.

Thank You
= ——
_— <€— Water fall or Linear model
Sra—
.
N, o~
\
—
=

Iterative/ Incremental or Fountain Model of EDLC:

* It can be viewed as a cascaded model of linear models, where the cycles are repeated till
the requirements are met completely.

M P Es * The major advantage is that it provides a very good deployment cycle feedback after each
function or feature implementation and hence the data can be used as reference for

M od u Ie 5 19 development of similar products in future.

* Since each cycle acts as a maintenance phase of the previous cycle, changes in functions
or features can be easily incorporated and hence more responsive to changing user needs.

* Risk is spread across each cycle with limited features and can be minimised easily.

* Project management and testing is much simpler to linear model.

Tool Chain System:

I * A toolchain is the set of tools that compiles source code into
——— executables that can run on your target device, and includes a
1 | compiler, a linker, and .
i =t S —r -

f=d =1

[P T T

Loaders:

In computer systems a loader is the part of an operating system that is responsible for loading programs and
libraries. It is one of the essential stages in the process of starting a program, as it places programs into memory
and prepares them for execution.

Loading a program involves reading the contents of the executable file containing the program instructions into
memory, and then carrying out other required preparatory tasks to prepare the executable for running. Once
loading is complete, the operating system starts the program by passing control to the loaded program code.

Debuggers:

* A debugger or debugging tool is a computer program used to test and
debug other programs (the "target" program). The main use of a
debugger is to run the target program under controlled conditions that
permit the programmer to track its operations in progress and monitor
changes in computer resources (most often memory areas used by the
target program or the computer's operating system) that may indicate
malfunctioning code.

* Typical debugging facilities include the ability to run or halt the target
program at specific points, display the contents of memory, CPU registers
or storage devices (such as disk drives), and modify memory or register
contents in order to enter selected test data that might be a cause of
faulty program execution.

Profilers:

« Profiling is the process of measuring an application or system by running
an analysis tool called a profiler. Profiling tools can focus on many
aspects: functions call times and count, memory usage, cpu load, and
resource usage. Used to optimise the system.

Test Coverage:

Test coverage is defined as a technique which determines whether
our test cases are actually covering the application code and how much
code is exercised when we run those test cases. If there are 10
requirements and 100 tests created and if 90 tests are executed then test
coverage is 90%.

Thank You

