Switched Mode Power Converters

 (EE364)
S6-EEE

by

Prof. Dinto Mathew

Asst. Professor
Dept. of EEE, MACE

Module 1 - Overview I

(1) Introduction
(2) Control of DC-DC Converters
(3) Buck Converter

- Continuous Conduction Mode
- Boundary between CCM and DCM
- Discontinuous Conduction Mode
- Discontinuous Conduction Mode with Constant V_{d}
- Discontinuous Conduction Mode with Constant V_{0}
- Output Voltage Ripple
(4) Boost Converter
- Continuous Conduction Mode
- Boundary between CCM and DCM
- Discontinuous Conduction Mode
- Output Voltage Ripple
- Effect of Parasitic Elements

Module 1 - Overview II

- Continuous Conduction Mode
- Boundary between CCM and DCM
- Discontinuous Conduction Mode
- Output Voltage Ripple
- Effect of Parasitic Elements

1. Introduction

- DC-DC Converters: Unregulated dc input \rightarrow Controlled dc output

1. Introduction

- DC-DC Converters: Unregulated dc input \rightarrow Controlled dc output
- Regulated switch-mode DC power supplies

1. Introduction

- DC-DC Converters: Unregulated dc input \rightarrow Controlled dc output
- Regulated switch-mode DC power supplies
- DC motor drives

1. Introduction

- DC-DC Converters: Unregulated dc input \rightarrow Controlled dc output
- Regulated switch-mode DC power supplies
- DC motor drives

Figure 1: DC-DC Converter System

1. Introduction

- Assumptions
- Steady State Analysis

1. Introduction

- Assumptions
- Steady State Analysis
- Ideal Switches

1. Introduction

- Assumptions
- Steady State Analysis
- Ideal Switches
- Losses in inductive and capacitive elements are neglected

1. Introduction

- Assumptions
- Steady State Analysis
- Ideal Switches
- Losses in inductive and capacitive elements are neglected
- DC input voltage to the converter is assumed to have zero internal impedance

1. Introduction

- Assumptions
- Steady State Analysis
- Ideal Switches
- Losses in inductive and capacitive elements are neglected
- DC input voltage to the converter is assumed to have zero internal impedance
- Filter at output side of the converter

2. Control of DC-DC Converters

- DC output voltage is controlled to equal a desired level, though the input voltage and the output load may fluctuate

2. Control of DC-DC Converters

- DC output voltage is controlled to equal a desired level, though the input voltage and the output load may fluctuate
- $t_{o n}$ and $t_{o f f}$
- $T_{s}=t_{o n}+t_{\text {off }}$
- $V_{o}=$ Average output voltage
- $v_{o}=$ Instantaneous output voltage

2. Control of DC-DC Converters

- DC output voltage is controlled to equal a desired level, though the input voltage and the output load may fluctuate
- $t_{o n}$ and $t_{o f f}$
- $T_{s}=t_{o n}+t_{\text {off }}$
- $V_{o}=$ Average output voltage
- $v_{o}=$ Instantaneous output voltage

Control Schemes

(1) Pulse Width Modulation (PWM) switching

- Constant switching frequency $\left(f_{s w}\right) \Longrightarrow$ Constant T_{s}
- Adjusting $t_{o n}$ to control average output voltage
- Duty Ratio (D) is varied
- $\mathrm{D}=t_{\text {on }} / T_{s}$

2. Control of DC-DC Converters

- DC output voltage is controlled to equal a desired level, though the input voltage and the output load may fluctuate
- $t_{o n}$ and $t_{o f f}$
- $T_{s}=t_{o n}+t_{\text {off }}$
- $V_{o}=$ Average output voltage
- $v_{o}=$ Instantaneous output voltage

Control Schemes

(1) Pulse Width Modulation (PWM) switching

- Constant switching frequency $\left(f_{s w}\right) \Longrightarrow$ Constant T_{s}
- Adjusting $t_{o n}$ to control average output voltage
- Duty Ratio (D) is varied
- $\mathrm{D}=t_{\text {on }} / T_{s}$
(2) By varying both $f_{s w}$ and $t_{o n}$
- T_{s} and D are varied
- Used only in dc-dc converters with force-commutated thyristors
- Variation in $f_{s w} \rightarrow$ difficult to filter ripple components in the output.

Pulse Width Modulation (PWM) switching

- Gate signals are generated by comparing $v_{\text {control }}$ with repetitive waveform

Pulse Width Modulation (PWM) switching

- Gate signals are generated by comparing $v_{\text {control }}$ with repetitive waveform
- Repetitive waveform
- Sawtooth waveform
- Constant peak
- $f_{s w}$

Pulse Width Modulation (PWM) switching

Pulse Width Modulation (PWM) switching

- When $v_{\text {control }}>v_{s t} \rightarrow$ Switch is ON
- When $v_{\text {control }}<v_{s t} \rightarrow$ Switch is OFF

Pulse Width Modulation (PWM) switching

- When $v_{\text {control }}>v_{s t} \rightarrow$ Switch is ON
- When $v_{\text {control }}<v_{\text {st }} \rightarrow$ Switch is OFF
- Duty Ratio

$$
D=\frac{t_{\mathrm{on}}}{T_{s}}=\frac{v_{\text {control }}}{\hat{V}_{\mathrm{st}}}
$$

3. Buck Converter

- Step-down converter
- $V_{o}<V_{d}$

Figure 2: Buck Converter

3. Buck Converter

Figure 3: Output Voltage

Figure 4 : Frequency spectrum of $v_{o i}$

3. Buck Converter

- Average output voltage

$$
V_{o}=\frac{1}{T_{s}} \int_{0}^{T_{s}} v_{o}(t) d t=\frac{1}{T_{s}}\left(\int_{0}^{t_{\mathrm{on}}} V_{d} d t+\int_{t_{\infty}}^{T_{s}} 0 d t\right)=\frac{t_{\mathrm{on}}}{T_{s}} V_{d}=D V_{d}
$$

3. Buck Converter

- Average output voltage

$$
\begin{aligned}
V_{o}=\frac{1}{T_{s}} \int_{0}^{T_{s}} V_{o}(t) d t & =\frac{1}{T_{s}}\left(\int_{0}^{t_{\mathrm{on}}} V_{d} d t+\int_{t_{\infty \infty}}^{T_{s}} 0 d t\right)=\frac{t_{\mathrm{on}}}{T_{s}} V_{d}=D V_{d} \\
V_{o} & =\frac{V_{d}}{\hat{V}_{\mathrm{st}}} v_{\text {control }}=k v_{\text {control }}
\end{aligned}
$$

3. Buck Converter

- Average output voltage

$$
\begin{gathered}
V_{o}=\frac{1}{T_{s}} \int_{0}^{T_{s}} v_{o}(t) d t=\frac{1}{T_{s}}\left(\int_{0}^{t_{\mathrm{on}}} V_{d} d t+\int_{t_{\infty \infty}}^{T_{s}} 0 d t\right)=\frac{t_{\mathrm{on}}}{T_{s}} V_{d}=D V_{d} \\
V_{o}=\frac{V_{d}}{\hat{V}_{\mathrm{st}}} v_{\text {control }}=k v_{\text {control }} \\
k=\frac{V_{d}}{\hat{V}_{\mathrm{st}}}=\text { constant }
\end{gathered}
$$

3. Buck Converter

- Average output voltage

$$
\begin{gathered}
V_{o}=\frac{1}{T_{s}} \int_{0}^{T_{s}} v_{o}(t) d t=\frac{1}{T_{s}}\left(\int_{0}^{t_{\mathrm{on}}} V_{d} d t+\int_{t_{\infty}}^{T_{s}} 0 d t\right)=\frac{t_{\mathrm{on}}}{T_{s}} V_{d}=D V_{d} \\
V_{o}=\frac{V_{d}}{\hat{V}_{\mathrm{st}}} v_{\text {control }}=k v_{\text {control }} \\
k=\frac{V_{d}}{\hat{V}_{\mathrm{st}}}=\text { constant }
\end{gathered}
$$

- V_{o} can be controlled by varying D
- V_{o} varies linearly with the control voltage ($v_{\text {control }}$)

3. Buck Converter

- Average output voltage

$$
\begin{gathered}
V_{o}=\frac{1}{T_{s}} \int_{0}^{T_{s}} v_{o}(t) d t=\frac{1}{T_{s}}\left(\int_{0}^{t_{\mathrm{on}}} V_{d} d t+\int_{t_{\infty \infty}}^{T_{s}} 0 d t\right)=\frac{t_{\mathrm{on}}}{T_{s}} V_{d}=D V_{d} \\
V_{o}=\frac{V_{d}}{\hat{V}_{\mathrm{st}}} v_{\text {control }}=k v_{\text {control }} \\
k=\frac{V_{d}}{\hat{V}_{\mathrm{st}}}=\text { constant }
\end{gathered}
$$

- V_{o} can be controlled by varying D
- V_{o} varies linearly with the control voltage ($v_{\text {control }}$)
- Diode helps to dissipate the stored energy in inductor

3. Buck Converter

- Average output voltage

$$
\begin{gathered}
V_{o}=\frac{1}{T_{s}} \int_{0}^{T_{s}} v_{o}(t) d t=\frac{1}{T_{s}}\left(\int_{0}^{t_{\mathrm{on}}} V_{d} d t+\int_{t_{\infty \infty}}^{T_{s}} 0 d t\right)=\frac{t_{\mathrm{on}}}{T_{s}} V_{d}=D V_{d} \\
V_{o}=\frac{V_{d}}{\hat{V}_{\mathrm{st}}} v_{\text {control }}=k v_{\text {control }} \\
k=\frac{V_{d}}{\hat{V}_{\mathrm{st}}}=\text { constant }
\end{gathered}
$$

- V_{o} can be controlled by varying D
- V_{o} varies linearly with the control voltage ($v_{\text {control }}$)
- Diode helps to dissipate the stored energy in inductor
- Output voltage fluctuates between 0 and V_{d}
- Output voltage fluctuations are diminished by using a low-pass filter

3. Buck Converter

Operation

- When switch is ON
- Diode becomes revere biased
- Input provides energy to load \& inductor
- When switch is OFF
- Inductor current flows through diode and load

3. Buck Converter

Operation

- When switch is ON
- Diode becomes revere biased
- Input provides energy to load \& inductor
- When switch is OFF
- Inductor current flows through diode and load
- If filter capacitor is very high $\Longrightarrow v_{o} \approx V_{o}$

3. Buck Converter

Operation

- When switch is ON
- Diode becomes revere biased
- Input provides energy to load \& inductor
- When switch is OFF
- Inductor current flows through diode and load
- If filter capacitor is very high $\Longrightarrow v_{0} \cong V_{0}$
- Average Inductor current $=$ Average output current $\left(I_{o}\right)$
- Since average capacitor current in steady state is zero

3. Buck Converter

Figure 5 :

3.1 Continuous Conduction Mode

- Inductor current, $i_{L}(t)$ flows continuously
- $i_{L}(t)>0$

3.1 Continuous Conduction Mode

- Inductor current, $i_{L}(t)$ flows continuously
- $i_{L}(t)>0$

Operation

- When Switch is ON
- Diode becomes reverse biased
- $v_{L}=V_{d}-V_{o}$
- Linear increase in i_{L}
- When Switch is OFF
- i_{L} continues to flow due to inductor stored energy
- i_{L} flows through diode
- $v_{L}=-V_{0}$

3.1 Continuous Conduction Mode

3.1 Continuous Conduction Mode

- Integral of inductor voltage (v_{L}) over one time period (T_{s}) must be zero

$$
\int_{0}^{T_{L}} v_{L} d t=\int_{0}^{i_{\infty}} v_{L} d t+\int_{t_{\infty}}^{T_{s}} v_{L} d t=0
$$

3.1 Continuous Conduction Mode

- Integral of inductor voltage (v_{L}) over one time period (T_{s}) must be zero

$$
\int_{0}^{T_{L}} v_{L} d t=\int_{0}^{t_{\infty}} v_{L} d t+\int_{t_{\infty}}^{T_{s}} v_{L} d t=0
$$

- Areas A and B must be equal

$$
\left(V_{d}-V_{o}\right) t_{\mathrm{on}}=V_{o}\left(T_{s}-t_{\mathrm{on}}\right)
$$

3.1 Continuous Conduction Mode

- Integral of inductor voltage (v_{L}) over one time period (T_{s}) must be zero

$$
\int_{0}^{T_{L}} v_{L} d t=\int_{0}^{t_{\infty}} v_{L} d t+\int_{t_{\infty}}^{T_{s}} v_{L} d t=0
$$

- Areas A and B must be equal

$$
\begin{aligned}
& \left(V_{d}-V_{o}\right) t_{\mathrm{on}}=V_{o}\left(T_{s}-t_{\mathrm{on}}\right) \\
& \frac{V_{o}}{V_{d}}=\frac{t_{\mathrm{on}}}{T_{s}}=D \quad \text { (duty ratio) }
\end{aligned}
$$

- Output voltage varies linearly with the duty ratio of the switch for a given input voltage and it does not depend on any other circuit parameter

3.1 Continuous Conduction Mode

- Neglecting the power losses,

$$
P_{d}=P_{o}
$$

$$
V_{d} I_{d}=V_{o} I_{o}
$$

$$
\frac{I_{o}}{I_{d}}=\frac{V_{d}}{V_{o}}=\frac{1}{D}
$$

3.1 Continuous Conduction Mode

- Neglecting the power losses,

$$
P_{d}=P_{o}
$$

$$
\begin{gathered}
V_{d} I_{d}=V_{o} I_{o} \\
\frac{I_{o}}{I_{d}}=\frac{V_{d}}{V_{o}}=\frac{1}{D}
\end{gathered}
$$

- In continuous-conduction mode, Buck converter is equivalent to a dc voltage regulator where duty ratio can be continuously controlled electronically in a range of 0 to 1 .

3.2 Boundary between CCM and DCM

- i_{L} goes to zero at the end of OFF period

3.2 Boundary between CCM and DCM

- Boundary condition

$$
I_{L B}=\frac{1}{2} i_{L, p \text { cak }}=\frac{t_{\mathrm{on}}}{2 L}\left(V_{d}-V_{o}\right)=\frac{D T_{s}}{2 L}\left(V_{d}-V_{o}\right)=I_{o B}
$$

3.2 Boundary between CCM and DCM

- Boundary condition

$$
I_{L B}=\frac{1}{2} i_{L, \text { peak }}=\frac{t_{\mathrm{on}}}{2 L}\left(V_{d}-V_{o}\right)=\frac{D T_{s}}{2 L}\left(V_{d}-V_{o}\right)=I_{o B}
$$

- With a given set of values for $T_{s}, V_{d}, V_{o}, \mathrm{~L}$ and D , if the average inductor current $\left(I_{L}\right)$ becomes less than $I_{L B}$, then i_{L} will become discontinuous.

3.3 Discontinuous Conduction Mode

Modes

- Constant input voltage $\left(V_{d}\right)$
- Constant output voltage (V_{o})

Discontinuous Conduction Mode with Constant V_{d}

- DC motor speed control
- V_{d} remains constant \& V_{o} is controlled by adjusting the converter duty ratio D
- Average inductor current at the edge of continuous-conduction mode

$$
I_{L B}=\frac{T_{s} V_{d}}{2 L} D(1-D)
$$

- I_{0} required for a continuous conduction mode is maximum at $\mathrm{D}=0.5$

Discontinuous Conduction Mode with Constant V_{d}

- DC motor speed control
- V_{d} remains constant \& V_{o} is controlled by adjusting the converter duty ratio D
- Average inductor current at the edge of continuous-conduction mode

$$
I_{L B}=\frac{T_{s} V_{d}}{2 L} D(1-D)
$$

- I_{0} required for a continuous conduction mode is maximum at $\mathrm{D}=0.5$

$$
\begin{gathered}
I_{L B, \max }=\frac{T_{s} V_{d}}{8 L} \\
I_{L B}=4 I_{L B, \max } D(1-D)
\end{gathered}
$$

Discontinuous Conduction Mode with Constant V_{d}

Discontinuous Conduction Mode with Constant V_{d}

Operation

- Assume that initially converter is operating at the edge of continuous conduction for given values of $\mathrm{T}, \mathrm{L}, V_{d}$, and D
- Decrease output load power (i.e. increase load resistance)
- Then I_{L} will decrease
- Higher value of V_{o} than before and results in a discontinuous inductor current

Discontinuous Conduction Mode with Constant V_{d}

Operation

- Assume that initially converter is operating at the edge of continuous conduction for given values of $\mathrm{T}, \mathrm{L}, V_{d}$, and D
- Decrease output load power (i.e. increase load resistance)
- Then I_{L} will decrease
- Higher value of V_{o} than before and results in a discontinuous inductor current
During discontinuous period $\left(\Delta_{2} T_{s}\right)$
- $i_{L}=0, v_{L}=0$
- Power to load is supplied by filter capacitor alone

Discontinuous Conduction Mode with Constant V_{d}

- Integral of inductor voltage over one time period $=0$

Discontinuous Conduction Mode with Constant V_{d}

- Integral of inductor voltage over one time period $=0$

$$
\begin{aligned}
& \left(V_{d}-V_{o}\right) D T_{s}+\left(-V_{o}\right) \Delta_{1} T_{s}=0 \\
& \therefore \frac{V_{o}}{V_{d}}=\frac{D}{D+\Delta_{1}} \\
& \quad \text { where } \mathrm{D}+\Delta_{1}<1
\end{aligned}
$$

Discontinuous Conduction Mode with Constant V_{d}

- Integral of inductor voltage over one time period $=0$

$$
\begin{gathered}
\left(V_{d}-V_{o}\right) D T_{s}+\left(-V_{o}\right) \Delta_{1} T_{s}=0 \\
\therefore \frac{V_{o}}{V_{d}}=\frac{D}{D+\Delta_{1}} \\
\text { where } \mathrm{D}+\Delta_{1}<1 \\
i_{L, \text { peak }}=\frac{V_{o}}{L} \Delta_{1} T_{s}
\end{gathered}
$$

Discontinuous Conduction Mode with Constant V_{d}

$$
\begin{aligned}
I_{o} & =i_{L, \text { peak }} \frac{D+\Delta_{1}}{2} \\
& =\frac{V_{o} T_{s}}{2 L}\left(D+\Delta_{\mathrm{l}}\right) \Delta_{1} \\
& =\frac{V_{d} T_{s}}{2 L} D \Delta_{1} \\
& =4 I_{L B, \max } D \Delta_{1} \\
\therefore \Delta_{1} & =\frac{I_{o}}{4 I_{L B, \max } D}
\end{aligned}
$$

Discontinuous Conduction Mode with Constant V_{d}

$$
\begin{aligned}
I_{o} & =i_{L, p e a k} \frac{D+\Delta_{1}}{2} \\
& =\frac{V_{o} T_{s}}{2 L}\left(D+\Delta_{1}\right) \Delta_{1} \\
& =\frac{V_{d} T_{s}}{2 L} D \Delta_{1} \\
& =4 I_{L B, \max } D \Delta_{1} \\
\therefore \Delta_{1} & =\frac{I_{o}}{4 I_{L B, \max } D}
\end{aligned}
$$

$$
\frac{V_{o}}{V_{d}}=\frac{D^{2}}{D^{2}+\frac{1}{4}\left(I_{o} / I_{L B, \text { max }}\right)}
$$

Discontinuous Conduction Mode with Constant V_{d}

Figure 7: Step-down converter characteristics keeping V_{d} constant

Discontinuous Conduction Mode with Constant V_{d}

- In figure 7, voltage ratio $\left(V_{o} / V_{d}\right)$ is plotted as a function of $\left(I_{o} / I_{L B, \max }\right)$ for various values of duty ratio (D)
- Dashed curve shows the boundary between continuous and discontinuous modes.

Discontinuous Conduction Mode with Constant V_{0}

- In regulated dc power supplies, V_{d} may fluctuate but V_{o} is kept constant by adjusting the duty ratio (D)
- Average inductor current $\left(I_{L B}\right)$ at the edge of the continuous conduction mode is

Discontinuous Conduction Mode with Constant V_{0}

- In regulated dc power supplies, V_{d} may fluctuate but V_{o} is kept constant by adjusting the duty ratio (D)
- Average inductor current $\left(I_{L B}\right)$ at the edge of the continuous conduction mode is

$$
I_{L B}=\frac{T_{s} V_{o}}{2 L}(1-D)
$$

- If V_{o} is kept constant, the maximum value of $I_{L B}$ occurs at $\mathrm{D}=0$

Discontinuous Conduction Mode with Constant V_{0}

- In regulated dc power supplies, V_{d} may fluctuate but V_{o} is kept constant by adjusting the duty ratio (D)
- Average inductor current $\left(I_{L B}\right)$ at the edge of the continuous conduction mode is

$$
I_{L B}=\frac{T_{s} V_{o}}{2 L}(1-D)
$$

- If V_{o} is kept constant, the maximum value of $I_{L B}$ occurs at $\mathrm{D}=0$

$$
I_{L B, \max }=\frac{T_{s} V_{o}}{2 L}
$$

- Converter operation with $\mathrm{D}=0$ and a finite V_{d} is hypothetical

Discontinuous Conduction Mode with Constant V_{0}

$$
I_{L B}=(1-D) I_{L B, \max }
$$

- For the converter operation where V_{o} is kept constant, the required duty ratio (D) can be obtained as

Discontinuous Conduction Mode with Constant V_{0}

$$
I_{L B}=(1-D) I_{L B, \max }
$$

- For the converter operation where V_{o} is kept constant, the required duty ratio (D) can be obtained as

$$
D=\frac{V_{o}}{V_{d}}\left(\frac{I_{o} / I_{L B, \max }}{1-V_{o} / V_{d}}\right)^{1 / 2}
$$

- The duty ratio (D) as a function of $I_{0} / I_{L B, \max }$ is plotted in figure 8 for various values of $\left(V_{d} / V_{o}\right)$ keeping V_{o} constant
- Dashed curve shows the boundary between continuous and discontinuous modes.

Discontinuous Conduction Mode with Constant V_{o}

Figure 8: Step-down converter characteristics keeping V_{o} constant

3.4 Output Voltage Ripple

Figure 9: Output voltage ripple in Buck Converter

3.4 Output Voltage Ripple

- Assumption : If output capacitor is so large, $v_{o}(t)=V_{o}$
- But in practical circuits, there will be ripple in the output voltage
- The shaded area in figure 9 represents an additional charge ΔQ
- For a continuous conduction mode of operation, assuming that all of the ripple component in i_{L} flows through the capacitor and its average component flows through the load resistor, peak to peak voltage ripple $\left(\Delta V_{o}\right)$ can be calculated as

$$
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{1}{C} \frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T_{s}}{2}
$$

During $t_{\text {off }}$

3.4 Output Voltage Ripple

- Assumption : If output capacitor is so large, $v_{o}(t)=V_{o}$
- But in practical circuits, there will be ripple in the output voltage
- The shaded area in figure 9 represents an additional charge ΔQ
- For a continuous conduction mode of operation, assuming that all of the ripple component in i_{L} flows through the capacitor and its average component flows through the load resistor, peak to peak voltage ripple (ΔV_{o}) can be calculated as

$$
\Delta V_{o}=\frac{\Delta Q}{C}=\frac{1}{C} \frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T_{s}}{2}
$$

During $t_{\text {off }}$

$$
\Delta I_{L}=\frac{V_{o}}{L}(1-D) T_{s}
$$

3.4 Output Voltage Ripple

$$
\begin{gathered}
\Delta V_{o}=\frac{T_{s}}{8 C} \frac{V_{o}}{L}(1-D) T_{s} \\
\therefore \frac{\Delta V_{o}}{V_{o}}=\frac{1}{8} \frac{T_{s}^{2}(1-D)}{L C}=\frac{\pi^{2}}{2}(1-D)\left(\frac{f_{c}}{f_{s}}\right)^{2}
\end{gathered}
$$

where $f_{s}=$ Switching frequency and $f_{c}=$ Corner frequency of LPF

3.4 Output Voltage Ripple

$$
\begin{gathered}
\Delta V_{o}=\frac{T_{s}}{8 C} \frac{V_{o}}{L}(1-D) T_{s} \\
\therefore \frac{\Delta V_{o}}{V_{o}}=\frac{1}{8} \frac{T_{s}^{2}(1-D)}{L C}=\frac{\pi^{2}}{2}(1-D)\left(\frac{f_{c}}{f_{s}}\right)^{2}
\end{gathered}
$$

where $f_{s}=$ Switching frequency and $f_{c}=$ Corner frequency of LPF

- Voltage ripple can be minimized by selecting a corner frequency $\left(f_{c}\right)$ of the low-pass filter at the output such that $f_{c} \ll f_{s}$

$$
f_{c}=\frac{1}{2 \pi \sqrt{L C}}
$$

- Voltage ripple is independent of the output load power, so long as the converter operates in the continuous conduction mode
- In switch-mode dc power supplies, the percentage ripple in the output voltage is usually specified to be less than 1%

4. Boost Converter

- Regulated DC Power Supplies and Regenerative Braking of DC Motors
- Output voltage is always greater than the input voltage

4. Boost Converter

- Regulated DC Power Supplies and Regenerative Braking of DC Motors
- Output voltage is always greater than the input voltage

Operation

- When switch is ON
- Diode is reversed biased
- Output stage is isolated
- Input supplies energy to the inductor
- When switch is OFF
- Output stage receives energy from the inductor as well as from the input
- In steady state analysis, the output filter capacitor is assumed to be very large to ensure a constant output voltage ie, $v_{o}(t)=V_{o}$

4.1 Continuous Conduction Mode

Figure 10: Boost Converter

Figure 11: CCM (a) When Switch is ON (b) When Switch is OFF

4.1 Continuous Conduction Mode

- CCM \rightarrow Inductor current flows continuously ie, $i_{L}(t)>0$
- In steady state, the time integral of the inductor voltage over one time period must be zero

$$
V_{d} t_{\mathrm{on}}+\left(V_{d}-V_{o}\right) t_{\mathrm{off}}=0
$$

4.1 Continuous Conduction Mode

- CCM \rightarrow Inductor current flows continuously ie, $i_{L}(t)>0$
- In steady state, the time integral of the inductor voltage over one time period must be zero

$$
V_{d} t_{\mathrm{on}}+\left(V_{d}-V_{o}\right) t_{\mathrm{off}}=0
$$

$$
\frac{V_{o}}{V_{d}}=\frac{T_{s}}{t_{\text {off }}}=\frac{1}{1-D}
$$

4.1 Continuous Conduction Mode

- CCM \rightarrow Inductor current flows continuously ie, $i_{L}(t)>0$
- In steady state, the time integral of the inductor voltage over one time period must be zero

$$
\begin{gathered}
V_{d} t_{\text {on }}+\left(V_{d}-V_{o}\right) t_{\text {off }}=0 \\
\frac{V_{o}}{V_{d}}=\frac{T_{s}}{t_{\text {off }}}=\frac{1}{1-D} \\
P_{d}=P_{o}, \quad \therefore V_{d} I_{d}=V_{o} I_{o} \\
\frac{I_{o}}{I_{d}}=(1-D)
\end{gathered}
$$

4.1 Continuous Conduction Mode

4.2 Boundary between CCM and DCM

- i_{L} goes to zero at the end of OFF interval

4.2 Boundary between CCM and DCM

- Average inductor current at boundary ($I_{L B}$)

4.2 Boundary between CCM and DCM

- Average inductor current at boundary ($I_{L B}$)

$$
\begin{aligned}
I_{L B} & =\frac{1}{2} i_{L, \text { peak }} \\
& =\frac{1}{2} \frac{V_{d}}{L} t_{\text {on }} \\
& =\frac{T_{s} V_{o}}{2 L} D(1-D)
\end{aligned}
$$

4.2 Boundary between CCM and DCM

- Average inductor current at boundary ($I_{L B}$)

$$
\begin{aligned}
I_{L B} & =\frac{1}{2} i_{L, \text { peak }} \\
& =\frac{1}{2} \frac{V_{d}}{L} \delta_{\text {on }} \\
& =\frac{T_{s} V_{o}}{2 L} D(1-D)
\end{aligned}
$$

- In Boost converter, inductor \& input currents are same. ie, $i_{L}=i_{d}$
- Average output current at the edge of continuous conduction,

4.2 Boundary between CCM and DCM

- Average inductor current at boundary ($I_{L B}$)

$$
\begin{aligned}
I_{L B} & =\frac{1}{2} i_{L, \text { peak }} \\
& =\frac{1}{2} \frac{V_{d}}{L} t_{\text {on }} \\
& =\frac{T_{s} V_{o}}{2 L} D(1-D)
\end{aligned}
$$

- In Boost converter, inductor \& input currents are same. ie, $i_{L}=i_{d}$
- Average output current at the edge of continuous conduction,

$$
I_{o B}=\frac{T_{s} V_{o}}{2 L} D(1-D)^{2}
$$

4.2 Boundary between CCM and DCM

- Keeping V_{o} constant and varying the duty ratio (D) imply that the input voltage $\left(V_{d}\right)$ is varying
- $I_{L B}$ reaches maximum value at $\mathrm{D}=0.5$

$$
I_{L B, \max }=\frac{T_{s} V_{o}}{8 L}
$$

- $I_{o B}$ has its maximum at $\mathrm{D}=1 / 3=0.333$

$$
\begin{aligned}
I_{O B, \max } & =\frac{2}{27} \frac{T_{s} V_{o}}{L}=0.074 \frac{T_{s} V_{o}}{L} \\
I_{L B} & =4 D(1-D) I_{L B, \max }
\end{aligned}
$$

4.2 Boundary between CCM and DCM

$$
I_{O B}=\frac{27}{4} D(1-D)^{2} I_{o B, \max }
$$

- For a given D , with constant V_{o}, if the average load current (I_{0}) drops below $\left(I_{o B}\right)$, OR $\left(i_{L}<i_{L B}\right)$, the current conduction will become discontinuous

4.3 Discontinuous Conduction Mode

Figure 12: Boost converter at discontinuous conduction

4.3 Discontinuous Conduction Mode

- Assume that as the output load power decreases, V_{d} and D remain constant
- Discontinuous current conduction occurs due to decreased $P_{o}\left(=P_{d}\right)$ and hence a lower $I_{L}\left(=I_{d}\right)$ since V_{d} is constant
- $i_{\text {Lpeak }}$ is same in both modes. Hence a lower value of I_{L} (and hence a discontinuous i_{L}) is possible only if V_{o} goes up
- Integral of inductor voltage over one time period is zero

4.3 Discontinuous Conduction Mode

- Assume that as the output load power decreases, V_{d} and D remain constant
- Discontinuous current conduction occurs due to decreased $P_{o}\left(=P_{d}\right)$ and hence a lower $I_{L}\left(=I_{d}\right)$ since V_{d} is constant
- $i_{\text {Lpeak }}$ is same in both modes. Hence a lower value of I_{L} (and hence a discontinuous i_{L}) is possible only if V_{o} goes up
- Integral of inductor voltage over one time period is zero

$$
V_{d} D T_{s}+\left(V_{d}-V_{o}\right) \Delta_{1} T_{s}=0
$$

$$
\frac{V_{o}}{V_{d}}=\frac{\Delta_{1}+D}{\Delta_{1}}
$$

4.3 Discontinuous Conduction Mode

- Since $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{\Delta_{1}}{\Delta_{1}+D}
$$

4.3 Discontinuous Conduction Mode

- Since $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{\Delta_{\mathrm{t}}}{\Delta_{1}+D}
$$

- Average input current $\left(I_{d}\right)=$ Average inductor current $\left(I_{L}\right)$

$$
I_{d}=\frac{V_{d}}{2 L} D T_{s}\left(D+\Delta_{1}\right)
$$

4.3 Discontinuous Conduction Mode

- Since $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{\Delta_{\mathrm{t}}}{\Delta_{1}+D}
$$

- Average input current $\left(I_{d}\right)=$ Average inductor current $\left(I_{L}\right)$

$$
\begin{gathered}
I_{d}=\frac{V_{d}}{2 L} D T_{s}\left(D+\Delta_{1}\right) \\
I_{o}=\left(\frac{T_{s} V_{d}}{2 L}\right) D \Delta_{1}
\end{gathered}
$$

4.3 Discontinuous Conduction Mode

- Since V_{o} is held constant and D varies in response to the variation in V_{d},

$$
D=\left[\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B, \max }}\right]^{1 / 2}
$$

4.3 Discontinuous Conduction Mode

- Since V_{o} is held constant and D varies in response to the variation in V_{d},

$$
D=\left[\frac{4}{27} \frac{V_{o}}{V_{d}}\left(\frac{V_{o}}{V_{d}}-1\right) \frac{I_{o}}{I_{o B, \max }}\right]^{1 / 2}
$$

- In discontinuous mode, if V_{o} is not controlled during each switching time period, energy will be transferred from the input to the output capacitor and to the load

$$
\frac{L}{2} i_{L, \text { peak }}^{2}=\frac{\left(V_{d} D T_{s}\right)^{2}}{2 L} \quad W-s
$$

- If the load is not able to absorb this energy, the capacitor voltage V_{c} ($=V_{0}$) would increase until an energy balance is established. If the load becomes very light, the increase in V_{o}, may cause a capacitor breakdown or a dangerously high voltage to occur.

4.3 Discontinuous Conduction Mode

4.4 Output Voltage Ripple

4.4 Output Voltage Ripple

- Assume that all the ripple current component of the diode current (i_{D}) flows through the capacitor and it's average value flows through the load resistor

4.4 Output Voltage Ripple

- Assume that all the ripple current component of the diode current (i_{D}) flows through the capacitor and it's average value flows through the load resistor

$$
\begin{aligned}
\Delta V_{o} & =\frac{\Delta Q}{C}=\frac{I_{o} D T_{s}}{C} \\
& =\frac{V_{o}}{R} \frac{D T_{s}}{C}
\end{aligned}
$$

4.4 Output Voltage Ripple

- Assume that all the ripple current component of the diode current (i_{D}) flows through the capacitor and it's average value flows through the load resistor

$$
\begin{aligned}
\Delta V_{o} & =\frac{\Delta Q}{C}=\frac{I_{o} D T_{s}}{C} \\
& =\frac{V_{o}}{R} \frac{D T_{s}}{C}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\Delta V_{o}}{V_{o}} & =\frac{D T_{s}}{R C} \\
& =D \frac{T_{s}}{\tau}
\end{aligned}
$$

4.5 Effect of Parasitic Elements

Figure 13: Effect of parasitic elements on D

4.5 Effect of Parasitic Elements

- Parasitic elements are due to the losses associated with the inductor, capacitor, switch and the diode
- Unlike ideal characteristic, in practice, $\left(V_{o} / V_{d}\right)$ declines as 'D' approaches unity
- Very poor switch utilization at high values of duty ratio
Q) In a step-up converter, the duty ratio is adjusted to regulate the output voltage at 48 V . The input voltage varies in a wide range from 12 to 36 V . The maximum power output is 120 W . For stability reasons, it is required that the converter always operate in a discontinuous-current-conduction mode. The switching frequency is 50 kHz . Assuming ideal components and C as very large, calculate the maximum value of L that can be used.

Problem

Q) In a step-up converter, the duty ratio is adjusted to regulate the output voltage at 48 V . The input voltage varies in a wide range from 12 to 36 V . The maximum power output is 120 W . For stability reasons, it is required that the converter always operate in a discontinuous-current-conduction mode. The switching frequency is 50 kHz . Assuming ideal components and C as very large, calculate the maximum value of L that can be used.

$$
\begin{aligned}
L & =\frac{20 \times 10^{-6} \times 48}{2 \times 2.5} 0.75(1-0.75)^{2} \\
& =9 \mu H
\end{aligned}
$$

5. Buck-Boost Converter

- Regulated DC power supplies
- Negative polarity output with respect to the common terminal of the input voltage
- Output voltage can be either higher or lower than the input voltage
- Cascade connection of Buck and Boost converters \rightarrow Buck-Boost Converter

$$
\frac{V_{o}}{V_{d}}=D \frac{1}{1-D}
$$

- Output voltage can be higher or lower than the input voltage, based on the duty ratio

5. Buck-Boost Converter

Figure 14: Buck-Boost Converter

5. Buck-Boost Converter

Operation

- When switch is ON
- Input provides energy to the inductor
- Diode is reverse biased
- When switch is OFF
- Energy stored in the inductor is transferred to the output
- No energy is supplied by the input
- In steady-state analysis, the output capacitor is assumed to be very large $\Longrightarrow v_{o}(t)=V_{o}$

5.1 Continuous Conduction Mode

5.1 Continuous Conduction Mode

Figure 15: Buck-Boost Converter: Switch is ON

Figure 16: Buck-Boost Converter : Switch is OFF

5.1 Continuous Conduction Mode

- Inductor current flows continuously
- Integral of inductor voltage over one time period is zero \Longrightarrow

5.1 Continuous Conduction Mode

- Inductor current flows continuously
- Integral of inductor voltage over one time period is zero \Longrightarrow

$$
V_{d} D T_{s}+\left(-V_{o}\right)(1-D) T_{s}=0
$$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{1-D}
$$

- Assuming $P_{d}=P_{o}$

5.1 Continuous Conduction Mode

- Inductor current flows continuously
- Integral of inductor voltage over one time period is zero \Longrightarrow

$$
V_{d} D T_{s}+\left(-V_{o}\right)(1-D) T_{s}=0
$$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{1-D}
$$

- Assuming $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{1-D}{D}
$$

5.2 Boundary between CCM and DCM

- i_{L} goes to zero at the end of OFF period

5.2 Boundary between CCM and DCM

5.2 Boundary between CCM and DCM

- Average inductor current at boundary

5.2 Boundary between CCM and DCM

- Average inductor current at boundary

$$
\begin{aligned}
I_{L B} & =\frac{1}{2} i_{L, \text { peak }} \\
& =\frac{T_{s} V_{d}}{2 L} D
\end{aligned}
$$

- Average output current

5.2 Boundary between CCM and DCM

- Average inductor current at boundary

$$
\begin{aligned}
I_{L B} & =\frac{1}{2} i_{L, \text { peak }} \\
& =\frac{T_{s} V_{d}}{2 L} D
\end{aligned}
$$

- Average output current

$$
I_{o}=I_{L}-I_{d}
$$

5.2 Boundary between CCM and DCM

- Average inductor current at boundary

$$
\begin{aligned}
I_{L B} & =\frac{1}{2} i_{L, \text { peak }} \\
& =\frac{T_{s} V_{d}}{2 L} D
\end{aligned}
$$

- Average output current

$$
\begin{gathered}
I_{o}=I_{L}-I_{d} \\
I_{L B}=\frac{T_{S} V_{o}}{2 L}(1-D) \\
I_{o B}=\frac{T_{s} V_{o}}{2 L}(1-D)^{2}
\end{gathered}
$$

5.2 Boundary between CCM and DCM

- $I_{L B}$ and I_{0} result in their maximum values at $\mathrm{D}=0$

5.2 Boundary between CCM and DCM

- $I_{L B}$ and I_{0} result in their maximum values at $\mathrm{D}=0$

$$
\begin{aligned}
& I_{L B, \text { max }}=\frac{T_{s} V_{o}}{2 L} \\
& I_{o B, \text { max }}=\frac{T_{s} V_{o}}{2 L}
\end{aligned}
$$

5.2 Boundary between CCM and DCM

- $I_{L B}$ and I_{0} result in their maximum values at $\mathrm{D}=0$

$$
\begin{gathered}
I_{L B, \max }=\frac{T_{s} V_{o}}{2 L} \\
I_{o B, \text { max }}=\frac{T_{s} V_{o}}{2 L} \\
I_{L B}=I_{L B, \max }(1-D) \\
I_{O B}=I_{O B, \max }(1-D)^{2}
\end{gathered}
$$

5.3 Discontinuous Conduction Mode

5.3 Discontinuous Conduction Mode

5.3 Discontinuous Conduction Mode

- Integral of inductor voltage over one time period is zero

5.3 Discontinuous Conduction Mode

- Integral of inductor voltage over one time period is zero

$$
V_{d} D T_{s}+\left(-V_{o}\right) \Delta_{1} T_{s}=0
$$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{\Delta_{1}}
$$

- Assuming $P_{d}=P_{o}$

5.3 Discontinuous Conduction Mode

- Integral of inductor voltage over one time period is zero

$$
V_{d} D T_{s}+\left(-V_{o}\right) \Delta_{1} T_{s}=0
$$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{\Delta_{1}}
$$

- Assuming $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{\Delta_{1}}{D}
$$

5.3 Discontinuous Conduction Mode

$$
\begin{aligned}
& I_{L}=\frac{V_{d}}{2 L} D T_{s}\left(D+\Delta_{1}\right) \\
& D=\frac{V_{o}}{V_{d}} \sqrt{\frac{I_{o}}{I_{o B, \text { max }}}}
\end{aligned}
$$

- Boundary between the continuous mode and discontinuous mode is shown by the dashed curve.

5.4 Output Voltage Ripple

5.4 Output Voltage Ripple

- Assuming that all the ripple current component of i_{D} flows through the capacitor and its average value flows through the load resistor, the shaded area represents charge ΔQ
- Peak to peak voltage ripple

$$
\begin{aligned}
\Delta V_{o} & =\frac{\Delta Q}{C}=\frac{I_{o} D T_{s}}{C} \\
& =\frac{V_{o}}{R} \frac{D T_{s}}{C} \\
\frac{\Delta V_{o}}{V_{o}} & =\frac{D T_{s}}{R C} \\
& =D \frac{T_{s}}{\tau}
\end{aligned}
$$

where $\tau=\mathrm{RC}$ is the time constant

5.5 Effect of Parasitic Elements

5.5 Effect of Parasitic Elements

- Dashed curve shows very poor switch utilization, making very high duty ratios impractical
- Parasitic elements will affect the voltage conversion ratio and the stability of the feedback regulated buck-boost converter.

Problem

Q) In a buck-boost converter operating at $20 \mathrm{kHz}, \mathrm{L}=0.05 \mathrm{mH}$. The output capacitor C is sufficiently large and $V_{d}=15 \mathrm{~V}$. The output is to be regulated at 10 V and the converter is supplying a load of 10 W . Calculate the duty ratio D .

Problem

Q) In a buck-boost converter operating at $20 \mathrm{kHz}, \mathrm{L}=0.05 \mathrm{mH}$. The output capacitor C is sufficiently large and $V_{d}=15 \mathrm{~V}$. The output is to be regulated at 10 V and the converter is supplying a load of 10 W . Calculate the duty ratio D .

$$
\frac{D}{1-D}=\frac{10}{15} \Rightarrow D=0.4
$$

Problem

Q) In a buck-boost converter operating at $20 \mathrm{kHz}, \mathrm{L}=0.05 \mathrm{mH}$. The output capacitor C is sufficiently large and $V_{d}=15 \mathrm{~V}$. The output is to be regulated at 10 V and the converter is supplying a load of 10 W . Calculate the duty ratio D .

$$
\begin{aligned}
& \frac{D}{1-D}=\frac{10}{15} \Rightarrow D=0.4 \\
& I_{o B, \max }=\frac{0.05 \times 10}{2 \times 0.05}=5 \mathrm{~A}
\end{aligned}
$$

Problem

Q) In a buck-boost converter operating at $20 \mathrm{kHz}, \mathrm{L}=0.05 \mathrm{mH}$. The output capacitor C is sufficiently large and $V_{d}=15 \mathrm{~V}$. The output is to be regulated at 10 V and the converter is supplying a load of 10 W . Calculate the duty ratio D .

$$
\begin{aligned}
& \frac{D}{1-D}=\frac{10}{15} \Rightarrow D=0.4 \\
& I_{o B, \max }=\frac{0.05 \times 10}{2 \times 0.05}=5 \mathrm{~A} \\
& I_{o B}=5(1-0.4)^{2}=1.8 \mathrm{~A}
\end{aligned}
$$

Problem

Q) In a buck-boost converter operating at $20 \mathrm{kHz}, \mathrm{L}=0.05 \mathrm{mH}$. The output capacitor C is sufficiently large and $V_{d}=15 \mathrm{~V}$. The output is to be regulated at 10 V and the converter is supplying a load of 10 W . Calculate the duty ratio D .

$$
\begin{aligned}
& \frac{D}{1-D}=\frac{10}{15} \Rightarrow D=0.4 \\
& I_{o B, \max }=\frac{0.05 \times 10}{2 \times 0.05}=5 \mathrm{~A} \\
& I_{o B}=5(1-0.4)^{2}=1.8 \mathrm{~A} \\
& D=\frac{10}{15} \sqrt{\frac{1.0}{5.0}}=0.3
\end{aligned}
$$

(1) Mohan, Undeland, Robbins, "Power Electronics Converters Application and Design", Wiley-India
(2) Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Pearson Education
(3) Abraham Pressman, "Switching Power supply Design", McGraw Hill

Thank You

*for private circulation only

Switched Mode Power Converters

 (EE364)
S6-EEE

by

Prof. Dinto Mathew

Asst. Professor
Dept. of EEE, MACE

Module 2 - Overview

(1) Cuk Converter
(2) Full Bridge DC-DC Converter

- PWM with Bipolar Voltage Switching
- PWM with Unipolar Voltage Switching
(3) Comparison of DC-DC Converters
(4) Linear Power Supply
(5) Switched Mode Power Supply
(6) DC-DC Converters with Electrical Isolation
(7) Unidirectional Core Excitation
(8) Bidirectional Core Excitation

1. Cuk Converter

- Provides negative polarity regulated output voltage with respect to the common terminal of the input voltage
- $C_{1} \rightarrow$ Storing and transferring energy from the input to the output
- In steady state, average inductor voltages $V_{L 1} \& V_{L 2}$ are zero

$$
V_{C 1}=V_{d}+V_{o}
$$

- $V_{C 1}$ is larger than both V_{d} and V_{o}
- Large $C_{1} \Longrightarrow v_{C 1}=V_{C 1}$, even though it stores and transfers energy from the input to the output

1. Cuk Converter

Figure 1: Cuk Converter

1. Cuk Converter

1. Cuk Converter

1. Cuk Converter

Figure 2: Cuk Converter (a) Switch OFF (b) Switch ON

1. Cuk Converter

Operation

- When Switch is OFF
- $i_{L 1}$ and $i_{L 2}$ flow through the diode
- C_{1} is charged through the diode by energy from both the input and L_{1}
- $i_{L 1}$ decreases since $V_{C 1}>V_{d}$
- $i_{L 2}$ decreases since energy stored in L_{2} feeds output

1. Cuk Converter

Operation

- When Switch is OFF
- $i_{L 1}$ and $i_{L 2}$ flow through the diode
- C_{1} is charged through the diode by energy from both the input and L_{1}
- $i_{L 1}$ decreases since $V_{C 1}>V_{d}$
- $i_{L 2}$ decreases since energy stored in L_{2} feeds output
- When Switch is ON
- $V_{C 1}$ reverse biases diode
- $i_{L 1} \& i_{L 2}$ flow through the switch
- C_{1} discharges through the switch, transferring energy to the output and L_{2} since $V_{C 1}>V_{o}$
- $i_{L 2}$ increases
- Input feeds energy to L_{1} causing $i_{L 1}$ to increase

1. Cuk Converter

- Let $i_{L 1} \& i_{L 2}$ are to be continuous $\Longrightarrow \mathbf{C C M}$
- Assume $V_{C 1}$ to be constant
- Integral of $v_{L 1} \& v_{L 2}$ over one time period yields zero

1. Cuk Converter

- Let $i_{L 1} \& i_{L 2}$ are to be continuous \Longrightarrow CCM
- Assume $V_{C 1}$ to be constant
- Integral of $v_{L 1} \& v_{L 2}$ over one time period yields zero

$$
\begin{gathered}
V_{d} D T_{s}+\left(V_{d}-V_{C 1}\right)(1-D) T_{s}=0 \\
V_{C 1}=\frac{1}{1-D} V_{d}
\end{gathered}
$$

1. Cuk Converter

- Let $i_{L 1} \& i_{L 2}$ are to be continuous $\Longrightarrow \mathbf{C C M}$
- Assume $V_{C 1}$ to be constant
- Integral of $v_{L 1} \& v_{L 2}$ over one time period yields zero

$$
\begin{gathered}
V_{d} D T_{s}+\left(V_{d}-V_{C 1}\right)(1-D) T_{s}=0 \\
V_{C 1}=\frac{1}{1-D} V_{d} \\
\left(V_{C 1}-V_{o}\right) D T_{s}+\left(-V_{o}\right)(1-D) T_{s}=0 \\
V_{C 1}=\frac{1}{D} V_{o}
\end{gathered}
$$

1. Cuk Converter

- Let $i_{L 1} \& i_{L 2}$ are to be continuous $\Longrightarrow \mathbf{C C M}$
- Assume $V_{C 1}$ to be constant
- Integral of $v_{L 1} \& v_{L 2}$ over one time period yields zero

$$
\begin{gathered}
V_{d} D T_{s}+\left(V_{d}-V_{C 1}\right)(1-D) T_{s}=0 \\
V_{C 1}=\frac{1}{1-D} V_{d} \\
\left(V_{C 1}-V_{o}\right) D T_{s}+\left(-V_{o}\right)(1-D) T_{s}=0 \\
V_{C 1}=\frac{1}{D} V_{o}
\end{gathered}
$$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{1-D}
$$

1. Cuk Converter

- Assuming $P_{d}=P_{o}$

1. Cuk Converter

- Assuming $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{1-D}{D}
$$

- $I_{L 1}=I_{d}$ and $I_{L 2}=I_{0}$

1. Cuk Converter

- Assuming $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{1-D}{D}
$$

- $I_{L 1}=I_{d}$ and $I_{L 2}=I_{0}$
- Assume that $i_{L 1}$ and $i_{L 2}$ are ripple free $\Longrightarrow i_{L 1}=I_{L 1}$ and $i_{L 2}=I_{L 2}$
- When switch is OFF, the charge delivered to C_{1} equals $I_{L 1}(1-D) T_{s}$
- When switch is ON, the capacitor discharges by an amount $I_{L 2} D T_{s}$
- In steady state, the net change of charge associated with C_{1} over one time period must be zero

1. Cuk Converter

- Assuming $P_{d}=P_{o}$

$$
\frac{I_{o}}{I_{d}}=\frac{1-D}{D}
$$

- $I_{L 1}=I_{d}$ and $I_{L 2}=I_{o}$
- Assume that $i_{L 1}$ and $i_{L 2}$ are ripple free $\Longrightarrow i_{L 1}=I_{L 1}$ and $i_{L 2}=I_{L 2}$
- When switch is OFF, the charge delivered to C_{1} equals $I_{L 1}(1-D) T_{s}$
- When switch is ON, the capacitor discharges by an amount $I_{L 2} D T_{s}$
- In steady state, the net change of charge associated with C_{1} over one time period must be zero

$$
\begin{gathered}
I_{L 1}(1-D) \mathrm{T}_{\mathrm{s}}=\mathrm{I}_{\mathrm{L}_{2} \mathrm{DT}_{\mathrm{s}}} \\
\frac{I_{L 2}}{I_{L 1}}=\frac{I_{o}}{I_{d}}=\frac{1-D}{D}
\end{gathered}
$$

1. Cuk Converter

- Since $P_{o}=P_{d}$

1. Cuk Converter

- Since $P_{o}=P_{d}$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{1-D}
$$

Advantages

1. Cuk Converter

- Since $P_{o}=P_{d}$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{1-D}
$$

Advantages

- Both the input current and the current feeding the output stage are reasonably ripple free
- Possible to simultaneously eliminate the ripples in $i_{L 1}$ and $i_{L 2}$ completely, leading to lower external filtering requirements

Disadvantages

1. Cuk Converter

- Since $P_{o}=P_{d}$

$$
\frac{V_{o}}{V_{d}}=\frac{D}{1-D}
$$

Advantages

- Both the input current and the current feeding the output stage are reasonably ripple free
- Possible to simultaneously eliminate the ripples in $i_{L 1}$ and $i_{L 2}$ completely, leading to lower external filtering requirements

Disadvantages

- Requirement of a capacitor C_{1} with a large ripple current carrying capability

Problem

Q) In a Cuk converter operating at $50 \mathrm{kHz}, L_{1}=L_{2}=1 \mathrm{mH}$ and $C_{1}=5 \mu \mathrm{~F}$. $V_{d}=10 \mathrm{~V}$ and the output V_{o} is regulated to be constant at 5 V . It is supplying 5 W to a load. Assume ideal components. Calculate the percentage errors in assuming a constant voltage across C_{1} or in assuming constant currents $i_{L 1}$ and $i_{L 2}$.

Problem

Q) In a Cuk converter operating at $50 \mathrm{kHz}, L_{1}=L_{2}=1 \mathrm{mH}$ and $C_{1}=5 \mu \mathrm{~F}$. $V_{d}=10 \mathrm{~V}$ and the output V_{o} is regulated to be constant at 5 V . It is supplying 5W to a load. Assume ideal components. Calculate the percentage errors in assuming a constant voltage across C_{1} or in assuming constant currents $i_{L 1}$ and $i_{L 2}$.
(a)

$$
v_{C 1}=V_{C 1}=10+5=15 \mathrm{~V}
$$

Problem

Q) In a Cuk converter operating at $50 \mathrm{kHz}, L_{1}=L_{2}=1 \mathrm{mH}$ and $C_{1}=5 \mu \mathrm{~F}$. $V_{d}=10 \mathrm{~V}$ and the output V_{o} is regulated to be constant at 5 V . It is supplying 5 W to a load. Assume ideal components. Calculate the percentage errors in assuming a constant voltage across C_{1} or in assuming constant currents $i_{L 1}$ and $i_{L 2}$.
(a)

$$
\begin{gathered}
v_{C 1}=V_{C 1}=10+5=15 \mathrm{~V} \\
\frac{D}{1-D}=\frac{5}{10} \Rightarrow D=0.333
\end{gathered}
$$

Problem

Q) In a Cuk converter operating at $50 \mathrm{kHz}, L_{1}=L_{2}=1 \mathrm{mH}$ and $C_{1}=5 \mu \mathrm{~F}$. $V_{d}=10 \mathrm{~V}$ and the output V_{o} is regulated to be constant at 5 V . It is supplying 5W to a load. Assume ideal components. Calculate the percentage errors in assuming a constant voltage across C_{1} or in assuming constant currents $i_{L 1}$ and $i_{L 2}$.
(a)

$$
\begin{aligned}
& v_{C 1}=V_{C 1}=10+5=15 \mathrm{~V} \\
& \frac{D}{1-D}=\frac{5}{10} \Rightarrow D=0.333 \\
\Delta i_{L 1}= & \frac{V_{C 1}-V_{d}}{L_{1}}(1-D) T_{s} \\
= & \frac{(15-10)}{10^{-3}}(1-0.333) \times 20 \times 10^{-6} \\
= & 0.067 \mathrm{~A}
\end{aligned}
$$

Problem

$$
\begin{aligned}
\Delta i_{L 2} & =\frac{V_{o}}{L_{2}}(1-D) T_{s} \\
& =\frac{5}{10^{-3}}(1-0.333) \times 20 \times 10^{-6} \\
& =0.067 \mathrm{~A}
\end{aligned}
$$

Problem

$$
\begin{aligned}
\Delta i_{L 2} & =\frac{V_{o}}{L_{2}}(1-D) T_{s} \\
& =\frac{5}{10^{-3}}(1-0.333) \times 20 \times 10^{-6} \\
& =0.067 \mathrm{~A} \\
I_{o} & =1 \mathrm{~A} \text { and } I_{d}=0.5 \mathrm{~A}
\end{aligned}
$$

Problem

$$
\begin{aligned}
\Delta i_{L 2} & =\frac{V_{o}}{L_{2}}(1-D) T_{s} \\
& =\frac{5}{10^{-3}}(1-0.333) \times 20 \times 10^{-6} \\
& =0.067 \mathrm{~A} \\
I_{o} & =1 \mathrm{~A} \text { and } I_{d}=0.5 \mathrm{~A}
\end{aligned}
$$

$$
\frac{\Delta i_{L_{1}}}{I_{L_{1}}}=\frac{0.067 \times 100}{0.5}=13.4 \%
$$

Problem

$$
\begin{aligned}
\Delta i_{L 2} & =\frac{V_{o}}{L_{2}}(1-D) T_{s} \\
& =\frac{5}{10^{-3}}(1-0.333) \times 20 \times 10^{-6} \\
& =0.067 \mathrm{~A} \\
I_{o} & =1 \mathrm{~A} \text { and } I_{d}=0.5 \mathrm{~A}
\end{aligned}
$$

$$
\frac{\Delta i_{L_{1}}}{I_{L_{1}}}=\frac{0.067 \times 100}{0.5}=13.4 \%
$$

$$
\frac{\Delta i_{L 2}}{I_{L 2}}=\frac{0.067 \times 100}{1.0}=6.7 \%
$$

Problem

(b)

$$
\Delta V_{C 1}=\frac{1}{C} \int_{0}^{(1-D) T_{L}} i_{L 1} d t
$$

Problem

(b)

$$
\begin{aligned}
\Delta V_{C 1} & =\frac{1}{C} \int_{0}^{(1-D) T_{L}} i_{L 1} d t \\
i_{L 1} & =I_{L 1}=0.5 \mathrm{~A}
\end{aligned}
$$

Problem

(b)

$$
\Delta V_{C 1}=\frac{1}{C} \int_{0}^{(1-D) T_{L_{i}}} i_{L_{1}} d t
$$

$$
i_{L 1}=I_{L 1}=0.5 \mathrm{~A}
$$

$$
\begin{aligned}
\Delta V_{C 1} & =\frac{1}{5 \times 10^{-6}} \times 0.5 \times(1-0.333) 20 \times 10^{-6} \\
& =1.33 \mathrm{~V}
\end{aligned}
$$

Problem

(b)

$$
\Delta V_{C 1}=\frac{1}{C} \int_{0}^{(1-D) T_{L}} i_{L 1} d t
$$

$$
i_{L 1}=I_{L 1}=0.5 \mathrm{~A}
$$

$$
\begin{aligned}
\Delta V_{C 1} & =\frac{1}{5 \times 10^{-6}} \times 0.5 \times(1-0.333) 20 \times 10^{-6} \\
& =1.33 \mathrm{~V}
\end{aligned}
$$

$$
\frac{\Delta V_{C 1}}{V_{C 1}}=\frac{1.33 \times 100}{15}=8.87 \%
$$

2. Full Bridge DC-DC Converter

Applications

- DC motor drives
- Single phase uninterruptible AC power supplies
- Switch mode transformer isolated power supplies (DC to AC high/ intermediate frequency conversion)

Full Bridge DC-DC Converter

- Input is fixed magnitude DC voltage, V_{d}
- Output is DC voltage, V_{o}
- V_{o} can be controlled in magnitude as well as polarity
- Magnitude and direction of output current (i_{o}) can also be controlled
- Can operate in all four quadrants of $\left(i_{o}-v_{o}\right)$ plane
- Power flow can be in either direction

2. Full Bridge DC-DC Converter

2. Full Bridge DC-DC Converter

- Diodes are connected in antiparallel with switches
- ON state and Conducting state of switch
- Since diodes are connected in antiparallel with the switches, when a switch is turned on, it may or may not conduct a current, depending on the direction of the output current
- If switch conducts a current, then it is in a conducting state

2. Full Bridge DC-DC Converter

- Two legs, A and B
- Each leg consists of two switches and their antiparallel diodes
- The two switches in each leg are never OFF simultaneously
- In practice, they are both off for a short time interval, known as blanking time, to avoid short circuiting of DC input
- Output current, (io) will flow continuously

2. Full Bridge DC-DC Converter

- Two legs, A and B
- Each leg consists of two switches and their antiparallel diodes
- The two switches in each leg are never OFF simultaneously
- In practice, they are both off for a short time interval, known as blanking time, to avoid short circuiting of DC input
- Output current, (io) will flow continuously

Working

- If T_{A+} is ON and T_{A-} is OFF
- i_{0} will flow through T_{A+} if i_{o} is positive OR
- i_{0} will flow through D_{A+} if i_{0} is negative

$$
v_{A N}=V_{d}
$$

- If T_{A-} is ON and T_{A+} is OFF
- i_{0} will flow through T_{A-} if i_{0} is negative OR
- i_{0} will flow through D_{A-} if i_{0} is positive

$$
v_{A N}=0
$$

2. Full Bridge DC-DC Converter

- $v_{A N}$ depends only on switch status and is independent of the direction of i_{0}

2. Full Bridge DC-DC Converter

- $v_{A N}$ depends only on switch status and is independent of the direction of i_{0}
- $V_{A N}$ (output voltage of converter leg A , averaged over one switching frequency time period, T_{s}) depends only on input voltage $\left(V_{d}\right)$ and the duty ratio of T_{A+}

$$
V_{A N}=\frac{V_{d} t_{\mathrm{on}}+0 \cdot t_{\text {off }}}{T_{s}}=V_{d} \cdot \text { duty ratio of } T_{A+}
$$

- $V_{B N}$

$$
V_{B N}=V_{d} \cdot \text { duty ratio of } T_{B+}
$$

- Converter output voltage $V_{o}=V_{A N}-V_{B N}$
- V_{o} can be controlled by controlling the switch duty ratios and is independent of the magnitude and the direction of i_{0}

2. Full Bridge DC-DC Converter

PWM Switching Strategies

(1) PWM with Bipolar Voltage Switching

- (T_{A+}, T_{B-}) and (T_{A-}, T_{B+}) are treated as two switch pairs
- Switches in each pair are turned ON and OFF simultaneously

2. Full Bridge DC-DC Converter

PWM Switching Strategies

(1) PWM with Bipolar Voltage Switching

- (T_{A+}, T_{B-}) and ($T_{A_{-}}, T_{B+}$) are treated as two switch pairs
- Switches in each pair are turned ON and OFF simultaneously
(2) PWM with Unipolar Voltage Switching (Double PWM Switching)
- Switches in each inverter leg are controlled independently of the other leg

2. Full Bridge DC-DC Converter

PWM Switching Strategies

(1) PWM with Bipolar Voltage Switching

- (T_{A+}, T_{B-}) and (T_{A-}, T_{B+}) are treated as two switch pairs
- Switches in each pair are turned ON and OFF simultaneously
(2) PWM with Unipolar Voltage Switching (Double PWM Switching)
- Switches in each inverter leg are controlled independently of the other leg
- In full bridge DC-DC converter for DC motor drives, input current (i_{d}) changes direction instantaneously. Hence it is important that the input to this converter be a DC voltage source with a low internal impedance. In practice, the large filter capacitor provides low impedance path to i_{d}

2.1 PWM with Bipolar Voltage Switching

- Switches $\left(T_{A+}, T_{B-}\right)$ and ($\left.T_{B+}, T_{A_{-}}\right)$are treated as two switch pairs
- Two switches in a pair are simultaneously turned ON and OFF)
- One of the two switch pairs is always on
- Switching signals are generated by comparing triangular waveform ($v_{t r i}$) with control voltage $v_{\text {control }}$
- When $v_{\text {control }}>v_{\text {tri }} \Longrightarrow\left(T_{A+}\right.$ and $\left.T_{B-}\right)$ are turned ON
- When $v_{\text {control }}<v_{\text {tri }} \Longrightarrow\left(T_{A-}\right.$ and $\left.T_{B+}\right)$ are turned ON

$$
v_{\mathrm{tri}}=\hat{V}_{\mathrm{tri}} \frac{t}{T_{s} / 4} \quad 0<t<\frac{1}{4} T_{s}
$$

2.1 PWM with Bipolar Voltage Switching

- Switches $\left(T_{A+}, T_{B-}\right)$ and ($\left.T_{B+}, T_{A-}\right)$ are treated as two switch pairs
- Two switches in a pair are simultaneously turned ON and OFF)
- One of the two switch pairs is always on
- Switching signals are generated by comparing triangular waveform ($v_{t r i}$) with control voltage $v_{\text {control }}$
- When $v_{\text {control }}>v_{\text {tri }} \Longrightarrow\left(T_{A+}\right.$ and $\left.T_{B-}\right)$ are turned ON
- When $v_{\text {control }}<v_{\text {tri }} \Longrightarrow\left(T_{A-}\right.$ and $\left.T_{B+}\right)$ are turned ON

$$
v_{\mathrm{tri}}=\hat{V}_{\mathrm{tri}} \frac{t}{T_{s} / 4} \quad 0<t<\frac{1}{4} T_{s}
$$

- At $\mathrm{t}=t_{1}, v_{\text {tri }}=v_{\text {control }}$

$$
t_{1}=\frac{\nu_{\text {control }}}{\hat{V}_{\mathrm{tri}}} \frac{T_{s}}{4}
$$

2.1 PWM with Bipolar Voltage Switching

2.1 PWM with Bipolar Voltage Switching

2.1 PWM with Bipolar Voltage Switching

- ON duration $\left(t_{o n}\right)$ of switch pair $\left(T_{A+}, T_{B-}\right)$

$$
t_{\mathrm{on}}=2 t_{1}+\frac{1}{2} T_{s}
$$

2.1 PWM with Bipolar Voltage Switching

- ON duration $\left(t_{o n}\right)$ of switch pair $\left(T_{A+}, T_{B-}\right)$

$$
t_{\mathrm{on}}=2 t_{1}+\frac{1}{2} T_{s}
$$

- Duty ratio of (T_{A+} and $\left.T_{B-}\right)$

$$
D_{1}=\frac{t_{\mathrm{on}}}{T_{s}}=\frac{1}{2}\left(1+\frac{v_{\mathrm{control}}}{\hat{V}_{\mathrm{tri}}}\right)
$$

2.1 PWM with Bipolar Voltage Switching

- ON duration $\left(t_{o n}\right)$ of switch pair $\left(T_{A+}, T_{B-}\right)$

$$
t_{\mathrm{on}}=2 t_{1}+\frac{1}{2} T_{s}
$$

- Duty ratio of $\left(T_{A+}\right.$ and $\left.T_{B-}\right)$

$$
D_{1}=\frac{t_{\mathrm{on}}}{T_{s}}=\frac{1}{2}\left(1+\frac{v_{\mathrm{control}}}{\hat{V}_{\mathrm{tri}}}\right)
$$

- Duty ratio of (T_{A-} and $\left.T_{B+}\right)$

$$
\begin{gathered}
D_{2}=1-D_{1} \\
V_{o}=V_{A N}-V_{B N}=D_{1} V_{d}-D_{2} V_{d}=\left(2 D_{1}-1\right) V_{d}
\end{gathered}
$$

2.1 PWM with Bipolar Voltage Switching

$$
V_{o}=\frac{V_{d}}{\hat{V}_{\mathrm{ti}}} v_{\text {control }}=k v_{\text {control }}
$$

- Average output voltage varies linearly with the input control signal

2.1 PWM with Bipolar Voltage Switching

$$
V_{o}=\frac{V_{d}}{\hat{V}_{\text {ti }}} v_{\text {control }}=k v_{\text {control }}
$$

- Average output voltage varies linearly with the input control signal
- Blanking time introduces a slight non-linearity in the relationship between $v_{\text {control }}$ and V_{o}
- V_{o} switches between $+V_{d}$ and $-V_{d} \Longrightarrow$ Bipolar Voltage Switching PWM

2.1 PWM with Bipolar Voltage Switching

$$
V_{o}=\frac{V_{d}}{\hat{V}_{\mathrm{ti}}} v_{\text {control }}=k v_{\mathrm{control}}
$$

- Average output voltage varies linearly with the input control signal
- Blanking time introduces a slight non-linearity in the relationship between $v_{\text {control }}$ and V_{o}
- V_{o} switches between $+V_{d}$ and $-V_{d} \Longrightarrow$ Bipolar Voltage Switching PWM
- $0<D_{1}<1 \Longrightarrow-V_{d}<v_{o}<+V_{d}$
- v_{o} is independent of i_{o} since blanking time has been neglected
- Average output current $\left(I_{0}\right)$, can be either positive or negative
- For $I_{0}>0, \rightarrow$ Average power flow is from V_{d} to V_{o}
- For $I_{0}<0, \rightarrow$ Average power flow is from V_{o} to V_{d}

2.2 PWM with Unipolar Voltage Switching

- Regardless of the direction of i_{0},
- $v_{o}=0$ if T_{A+} and T_{B+} are both ON
- $v_{o}=0$ if T_{A-} and T_{B-} are both ON

2.2 PWM with Unipolar Voltage Switching

- Regardless of the direction of i_{0},
- $v_{o}=0$ if T_{A+} and T_{B+} are both ON
- $v_{o}=0$ if T_{A-} and T_{B-} are both ON
- Switching signal generation
- Comparison of $v_{\text {control }}$ with $v_{\text {tri }}$ controls leg A switches
- Comparison of $-v_{\text {control }}$ with $v_{\text {tri }}$ controls leg B switches

$$
\begin{aligned}
& T_{A+} \text { on: } \quad \text { if } v_{\text {control }}>v_{\mathrm{Gi}} \\
& T_{B+} \text { on: } \text { if }-v_{\text {control }}>v_{\mathrm{ti}}
\end{aligned}
$$

- Duty ratio of $\left(T_{A+}, T_{B+}\right)$

$$
D_{1}=\frac{1}{2}\left(\frac{\nu_{\text {control }}}{\hat{V}_{\text {tri }}}+1\right)
$$

- Duty ratio of $\left(T_{A-}, T_{B-}\right)$

$$
D_{2}=1-D_{1}
$$

2.2 PWM with Unipolar Voltage Switching

2.2 PWM with Unipolar Voltage Switching

2.2 PWM with Unipolar Voltage Switching

- Average output voltage V_{o},

$$
V_{o}=\left(2 D_{1}-1\right) V_{d}=\frac{V_{d}}{\hat{V}_{\text {tri }}} v_{\text {control }}
$$

2.2 PWM with Unipolar Voltage Switching

- Average output voltage V_{o},

$$
V_{o}=\left(2 D_{1}-1\right) V_{d}=\frac{V_{d}}{\hat{V}_{\text {vi }}} v_{\text {control }}
$$

- Average output voltage $\left(V_{o}\right)$ varies linearly with $v_{\text {control }}$
- V_{o} is positive in both modes
- If we consider same switching frequencies for bipolar and unipolar PWM strategies, then unipolar voltage switching results in a better output voltage waveform and in a better frequency response, since the effective switching frequency of the output voltage waveform is doubled and the ripple is reduced

2.2 PWM with Unipolar Voltage Switching

Q) In a full bridge DC-DC converter, the input V_{d}, is constant and the output voltage is controlled by varying the duty ratio. Calculate the rms value of the ripple V_{r}, in the output voltage as a function of the average
V_{o}, for
(1) PWM with bipolar voltage switching
(2) PWM with unipolar voltage switching

Ans: (1)

2.2 PWM with Unipolar Voltage Switching

$$
\begin{gathered}
V_{o, \mathrm{mms}}=V_{d} \\
V_{o}=V_{A N}-V_{B N}=D_{1} V_{d}-D_{2} V_{d}=\left(2 D_{1}-1\right) V_{d} \\
V_{r, \mathrm{mms}}=\sqrt{V_{o, \mathrm{~ms}}^{2}-V_{o}^{2}}=V_{d} \sqrt{1-\left(2 D_{1}-1\right)^{2}}=2 V_{d} \sqrt{D_{1}-D_{1}^{2}}
\end{gathered}
$$

- As D_{1} varies from 0 to $1, V_{o}$ varies from $-V_{d}$ to $+V_{d}$

2.2 PWM with Unipolar Voltage Switching

Figure 3: $V_{r m s}$ in a full bridge converter using PWM (a) Bipolar voltage switching (b) Unipolar voltage switching

2.2 PWM with Unipolar Voltage Switching

Ans: (2)

$$
\begin{aligned}
& \text { On-state: } \quad\left(T_{A+1} T_{B-}\right) /\left(T_{A+1} T_{B-}\right) \mid\left(T_{A+}, T_{B-}\right) \\
& \left(T_{A-}, T_{B-}\right) \quad\left(T_{A+}, T_{B+}\right)
\end{aligned}
$$

$$
t_{1}=\frac{v_{\text {control }}}{\hat{V}_{\text {tri }}} \frac{T_{s}}{4} \text { for } v_{\text {control }}>0
$$

2.2 PWM with Unipolar Voltage Switching

$$
\begin{aligned}
V_{o, \mathrm{mms}} & =\sqrt{\frac{4 t_{1} V_{d}^{2}}{T_{s}}} \\
& =\sqrt{\frac{v_{\text {control }}}{\hat{V}_{\text {tri }}} V_{d}} \\
& =\sqrt{\left(2 D_{1}-1\right)} V_{d}
\end{aligned}
$$

$$
V_{r, \mathrm{mms}}=\sqrt{V_{o, \mathrm{mms}}^{2}-V_{o}^{2}}=\sqrt{6 D_{1}-4 D_{1}^{2}-2 V_{d}}
$$

- $v_{\text {control }}>0$ and $0.5<D<1$
- As $v_{\text {control }} / V_{\text {tri }}$ varies from 0 to $1, D_{1}$ varies from 0.5 to 1
- PWM with unipolar voltage switching results in a lower rms ripple component in the output voltage

3. Comparison of DC-DC Converters

- Buck, Boost, Buck-Boost and Cuk converters
- Transfer energy only in one direction
- Produce only unidirectional voltage and unidirectional current
- Full Bridge Converter
- Bidirectional power flow
- Both V_{o} and I_{o} can be reversed independently
- Four quadrants ($V_{o}-I_{o}$ plane) operation $\rightarrow \mathrm{DC}$ to AC Inverter

3. Comparison of DC-DC Converters

- Buck, Boost, Buck-Boost and Cuk converters
- Transfer energy only in one direction
- Produce only unidirectional voltage and unidirectional current
- Full Bridge Converter
- Bidirectional power flow
- Both V_{o} and I_{0} can be reversed independently
- Four quadrants ($V_{o}-I_{o}$ plane) operation $\rightarrow \mathrm{DC}$ to AC Inverter

Assumptions

- Average current is at its rated (designed maximum) value I_{0}
- Ripple in the inductor current is negligible
- $i_{L}=I_{L}$
- Continuous Conduction Mode (CCM)
- Output voltage (v_{o}), is at its rated (designed maximum) value V_{o}
- Ripple in v_{o} is negligible
- $v_{0}=V_{o}$
- Input voltage V_{d} is allowed to vary
- Switch duty ratio must be controlled to hold V_{o} constant

3. Comparison of DC-DC Converters

- Switch peak voltage rating $=V_{T}$
- Switch peak current rating $=I_{T}$
- Switch power rating, $P_{T}=V_{T} \times I_{T}$
- Switch Utilization Factor $=\frac{P_{o}}{P_{T}}$

3. Comparison of DC-DC Converters

- Switch peak voltage rating $=V_{T}$
- Switch peak current rating $=I_{T}$
- Switch power rating, $P_{T}=V_{T} \times I_{T}$
- Switch Utilization Factor $=\frac{P_{0}}{P_{T}}$
- In Buck and Boost converters, if the input and the output voltages are of the same order of magnitude, then the switch utilization factor is very good
- In Buck-Boost and Cuk converter, the switch utilization factor is poor - Maximum Switch Utilization Factor $=0.25$ at $\mathrm{D}=0.5 \Longrightarrow V_{o}=V_{d}$
- In non-isolated full bridge converter, overall switch utilization is very poor
- Maximum Switch Utilization Factor occurs at $V_{o}=-V_{d}$ and $V_{o}=+V_{d}$ respectively

3. Comparison of DC-DC Converters

Figure 4: Switch utilization in DC-DC converters

3. Comparison of DC-DC Converters

Conclusion

- Good switch utilization \rightarrow either Buck or Boost Converter
- If both higher as well as lower output voltages compared to the input are necessary OR a negative polarity output compared to the input is desired \rightarrow Buck-Boost or Cuk Converter
- Four quadrant operation \rightarrow Non-isolated Full Bridge Converter

3. Comparison of DC-DC Converters

Converter Equivalent Circuits

Figure 5: Buck Converter

Figure 6: Boost Converter

3. Comparison of DC-DC Converters

Converter Equivalent Circuits

Figure 7: Buck-Boost Converter

Figure 8: Cuk Converter

3. Comparison of DC-DC Converters

Converter Equivalent Circuits

Figure 9: Full Bridge Converter

3. Comparison of DC-DC Converters

Summary

- In any converter circuit operating in steady state
- Capacitor can be represented by it's instantaneous voltage as an equivalent voltage source
- Inductor can be represented by it's instantaneous current as an equivalent current source
- In all converters, the switching action does not cause discontinuity in the value of the voltage source or in the current source
- In Buck (including full-bridge) and Boost converters, the energy transfer is between a voltage and a current source
- In Buck-Boost and Cuk converters, the energy transfer is between two similar types of sources but they are separated by a source of the other type (eg: Buck-Boost Converter, two voltage sources are separated by a current source)

3. Comparison of DC-DC Converters

Figure 10: Reversible power flow with reversible direction of the output current i_{0}

3. Comparison of DC-DC Converters

- Reversible power flow \rightarrow Add additional diode and a switch
- Converter with a positive value of i_{o} and with $S_{d} \& D_{d}$ operating, resembles a Buck Converter where the flow of power is from the voltage source to the equivalent current source
- Converter with a negative value of i_{0} and with $S_{u} \& D_{u}$ operating, resembles a Boost Converter where the flow of power is from the equivalent current source to the voltage source

4. Linear Power Supply

Regulated DC Power Supplies

- Regulated Output
- V_{o} must be held constant within a specified tolerance for changes within a specified range in the input voltage and the output loading
- Isolation
- Output may be electrically isolated from the input
- Multiple Outputs
- Multiple outputs (positive and negative) that may differ in their voltage and current ratings
- Multiple outputs may be isolated from each other

4. Linear Power Supply

Regulated DC Power Supplies

- Regulated Output
- V_{o} must be held constant within a specified tolerance for changes within a specified range in the input voltage and the output loading
- Isolation
- Output may be electrically isolated from the input
- Multiple Outputs
- Multiple outputs (positive and negative) that may differ in their voltage and current ratings
- Multiple outputs may be isolated from each other
- Reduce power supply size, weight \& improve efficiency
- Power supplies
- Linear Power Supplies
- Switched Mode Power Supplies (smaller \& much more efficient)

4. Linear Power Supply

- To provide electrical isolation between the input and the output and to deliver the output in the desired voltage range, a 60 Hz transformer is needed
- Transistor operating in it's active region is connected in series
- By comparing V_{o} with $V_{\text {ref }}$, the control circuit adjusts the transistor base current such that $V_{o}\left(=v_{d}-v_{C E}\right)$ equals $V_{o, \text { ref }}$
- Transistor acts as an adjustable resistor where the voltage difference ($v_{d}-V_{o}$) appears across the transistor and causes power losses in it
- To minimize transistor power losses, the transformer turns ratio should be selected such that $V_{d, \min }>V_{o}$, but does not exceed V_{o} by a large margin

4. Linear Power Supply

Figure 11: Schematic of Linear Power Supply

4. Linear Power Supply

Figure 12: Selection of Transformer Turns Ratio $\left(V_{d, \min }>V_{o}\right.$ by a small margin)

4. Linear Power Supply

Advantages

- Utilize simple circuitry \rightarrow Cost is less in small power ratings ($<25 \mathrm{~W}$)
- Do not produce large EMI with other equipment

4. Linear Power Supply

Advantages

- Utilize simple circuitry \rightarrow Cost is less in small power ratings ($<25 \mathrm{~W}$)
- Do not produce large EMI with other equipment

Disadvantages

- A low frequency $(60-\mathrm{Hz})$ transformer is required
- Larger in size and weight compared to high-frequency transformers
- Transistor operates in it's active region, incurring a significant amount of power loss
- Overall efficiency of linear power supplies is in a range of $30-60 \%$

5. Switched Mode Power Supply

- Voltage transformation is accomplished by using DC to DC converter circuits
- Converter circuits use solid state devices (MOSFETs, IGBTs etc.), which operate as a switch \rightarrow either completely OFF or completely $\mathrm{ON} \Longrightarrow$ Lower power dissipation
- Increased switching speeds, higher voltage \& current ratings and relatively lower cost

5. Switched Mode Power Supply

Figure 13: Schematic of Switched Mode DC Power Supply

5. Switched Mode Power Supply

Working

- Input AC voltage is rectified into an unregulated DC voltage by diode rectifier
- EMI filter is used at the input to prevent the conducted EMI
- DC-DC converter converts input DC voltage from one level to another DC level \rightarrow High frequency switching which produces high frequency AC across isolation transformer
- Secondary output of transformer is rectified and filtered to produce V_{o}
- V_{o} is regulated by feedback control that employs a PWM controller
- Electrical isolation in the feedback loop is provided either through an isolation transformer or through an optocoupler

5. Switched Mode Power Supply

- $V_{o 1}$ is regulated and the other two are unregulated
- If $V_{o 2}$ and/or $V_{o 3}$ needs to be regulated, linear regulator(s) can be used

5. Switched Mode Power Supply

Advantages of Switched Mode Power Supply over Linear Power Supply

- Switching elements (power transistors or MOSFETs) operate as a switch: either completely OFF or completely ON
- Significant reduction in power losses
- Higher energy efficiency in a $70-90 \%$ range
- Larger power handling capability
- Size \& weight of switching supplies can be significantly reduced due to the use of high frequency isolation transformer (as compared to a 50 or 60 Hz transformer in a linear power supply)

5. Switched Mode Power Supply

Advantages of Switched Mode Power Supply over Linear Power Supply

- Switching elements (power transistors or MOSFETs) operate as a switch: either completely OFF or completely ON
- Significant reduction in power losses
- Higher energy efficiency in a 70-90\% range
- Larger power handling capability
- Size \& weight of switching supplies can be significantly reduced due to the use of high frequency isolation transformer (as compared to a 50 or 60 Hz transformer in a linear power supply)
Disadvantages
- Switching power supplies are more complex
- Proper measures must be taken to prevent EMI due to high frequency switchings

5. Switched Mode Power Supply

Switching DC Power Supplies
(1) Switched Mode DC-DC Converters

- Switches operate in a switch mode
(2) Resonant Converters
- Utilize Zero Voltage and/or Zero Current switchings

6. DC-DC Converters with Electrical Isolation

- High frequency isolation transformer provides electrical isolation
- Transformer Core Characteristics ie, B-H (Hysteresis) Loop
- $B_{m} \rightarrow$ Maximum flux density beyond which saturation occurs
- $B_{r} \rightarrow$ Remnant flux density

Figure 14 : (a) Two-winding transformer (b) Equivalent circuit

6. DC-DC Converters with Electrical Isolation

Figure 15: Typical B-H loop of transformer core

6. DC-DC Converters with Electrical Isolation

Isolation Transformer Representation

- High frequency transformer provides electrical isolation
- $N_{1}: N_{2}=$ Transformer winding turns ratio
- $L_{m}=$ Magnetizing inductance referred to primary side
- $L_{/ 1} \& L_{/ 2}=$ Leakage inductances
- For ideal transformer
- $v_{1} / v_{2}=N_{1} / N_{2}$
- $N_{1} i_{1}=N_{2} i_{2}$
- Leakage inductances $\left(L_{/ 1} \& L_{/ 2}\right)$ are minimized by providing a tight magnetic coupling between the two windings
- Magnetizing inductance $\left(L_{m}\right)$ is made as high as possible to minimize the magnetizing current i_{m}, that flows through the switches \rightarrow minimizes switch current ratings

Isolation Transformer Representation

- In Flyback Converter, the transformer provides
- Energy storage as in an inductor
- Electrical isolation as in a transformer
- In Resonant Converters
- Leakage inductances and/or the magnetizing inductance may be utilized to provide zero-voltage and/or zero-current switchings

DC-DC Converters (with isolation) : based on the way how transformer core is utilized
(1) Unidirectional Core Excitation

- Only the positive part (quadrant 1) of the B-H loop is used
(2) Bidirectional Core excitation
- Both the positive (quadrant 1) and the negative (quadrant 3) parts of the B-H loop are utilized alternatively

7. Unidirectional Core Excitation

- DC-DC converters with electrical isolation (provided by means of unidirectional core excitation)

Types

(1) Flyback Converter (derived from Buck-Boost Converter)
(2) Forward Converter (derived from Buck Converter)

8. Bidirectional Core Excitation

- DC-DC converters with electrical isolation (provided by means of bidirectional core excitation)

Types

(1) Push-Pull Converter
(2) Half Bridge Converter
(3) Full Bridge Converter

Control of DC-DC Converters with Isolation

- In flyback and the forward converters, V_{o} is controlled by PWM
- In push-pull, half-bridge and full-bridge DC-DC converters, V_{o} is controllec by using PWM scheme which controls the interval A during which all the switches are OFF simultaneously

Figure 16: Push-Pull Converter

Control of DC-DC Converters with Isolation

Figure 17: Half Bridge Converter

Control of DC-DC Converters with Isolation

Figure 18: Full Bridge Converter

Control of DC-DC Converters with Isolation

Figure 19: PWM Scheme used in DC-DC converters
(1) Mohan, Undeland, Robbins, "Power Electronics Converters Application and Design", Wiley-India
(2) Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Pearson Education
(3) Abraham Pressman, "Switching Power supply Design", McGraw Hill

Thank You

*for private circulation only

Switched Mode Power Converters

 (EE364)
S6-EEE

by

Prof. Dinto Mathew

Asst. Professor
Dept. of EEE, MACE

Module 3 - Overview

(1) Fly Back Converter

- Continuous Conduction Mode
- Discontinuous Conduction Mode
(2) Double Ended Fly Back Converter
(3) Forward Converter
- Basic Forward Converter
- Practical Forward Converter

4 Double Ended Forward Converter
(5) Push-Pull Converter
(6) Half Bridge Converter
(7) Full Bridge Converter
8) Current Source DC-DC Converter

1. Fly Back Converter

- Derived from the Buck-Boost converter

Figure 1: Fly Back Converter derived from Buck-Boost Converter

1. Fly Back Converter

Figure 2: Fly Back Converter with switch ON

1. Fly Back Converter

Figure 3: Fly Back Converter with switch OFF

1.1 Continuous Conduction Mode

1.1 Continuous Conduction Mode

- When switch is ON
- Diode (D) is reverse biased due to the winding polarities
- Inductor core flux increases linearly from it's initial value $\Phi(0)$

$$
\phi(t)=\phi(0)+\frac{V_{d}}{N_{1}} t \quad 0<t<t_{\text {on }}
$$

1.1 Continuous Conduction Mode

- When switch is ON
- Diode (D) is reverse biased due to the winding polarities
- Inductor core flux increases linearly from it's initial value $\Phi(0)$

$$
\phi(t)=\phi(0)+\frac{V_{d}}{N_{1}} t \quad 0<t<t_{\text {on }}
$$

- Peak flux at the end of ON interval

$$
\hat{\phi}=\phi\left(t_{\mathrm{on}}\right)=\phi(0)+\frac{V_{d}}{N_{1}} t_{\mathrm{on}}
$$

1.1 Continuous Conduction Mode

- When switch is OFF
- Diode D is forward biased
- Energy stored in the core causes the current to flow in the secondary winding through the diode
- Voltage across the secondary winding $v_{2}=-V_{0} \Longrightarrow$ Flux decreases linearly

$$
\begin{aligned}
& \phi(t)=\hat{\phi}-\frac{V_{o}}{N_{2}}\left(t-t_{\mathrm{on}}\right) \quad t_{\mathrm{on}}<t<T_{s} \\
& \phi\left(T_{s}\right)=\hat{\phi}-\frac{V_{o}}{N_{2}}\left(T_{s}-t_{\mathrm{on}}\right) \\
&=\phi(0)+\frac{V_{d}}{N_{1}} t_{\mathrm{on}}-\frac{V_{o}}{N_{2}}\left(T_{s}-t_{\mathrm{on}}\right)
\end{aligned}
$$

1.1 Continuous Conduction Mode

- Net change of flux through the core over one time period must be zero in steady state \Longrightarrow

$$
\begin{gathered}
\phi\left(T_{s}\right)=\phi(0) \\
\frac{V_{o}}{V_{d}}=\frac{N_{2}}{N_{1}} \frac{D}{1-D}
\end{gathered}
$$

- Voltage transfer ratio depends on D in an identical manner as the Buck-Boost converter
- During ON interval, the transformer primary voltage $v_{1}=+V_{d} \Longrightarrow$ Inductor current rises linearly from it's initial value $I_{m}(0)$

$$
i_{m}(t)=i_{\mathrm{sw}}(t)=I_{m}(0)+\frac{V_{d}}{L_{m}} t \quad 0<t<t_{\mathrm{on}}
$$

1.1 Continuous Conduction Mode

$$
\hat{I}_{m}=\hat{I}_{\mathrm{sw}}=I_{m}(0)+\frac{V_{d}}{L_{m}} t_{\mathrm{on}}
$$

- During OFF interval
- Switch current goes to zero
- $v_{1}=-\left(N_{1} / N_{2}\right) V_{0}$

1.1 Continuous Conduction Mode

$$
\hat{I}_{m}=\hat{I}_{\mathrm{sw}}=I_{m}(0)+\frac{V_{d}}{L_{m}} t_{\mathrm{on}}
$$

- During OFF interval
- Switch current goes to zero
- $v_{1}=-\left(N_{1} / N_{2}\right) V_{0}$
- During $t_{o n}<t<T_{s}$

$$
\begin{gathered}
i_{m}(t)=\hat{I}_{m}-\frac{V_{o}\left(N_{1} / N_{2}\right)}{L_{m}}\left(t-t_{\mathrm{on}}\right) \\
i_{D}(t)=\frac{N_{1}}{N_{2}} i_{m}(t)=\frac{N_{1}}{N_{2}}\left[\hat{l}_{m}-\frac{V_{o}\left(N_{\mathrm{l}} / N_{2}\right)}{L_{m}}\left(t-t_{\mathrm{on}}\right)\right]
\end{gathered}
$$

1.1 Continuous Conduction Mode

- Average diode current (I_{0})

$$
\hat{I}_{m}=\hat{I}_{\mathrm{sw}}=\frac{N_{2}}{N_{1}} \frac{1}{1-D} I_{o}+\frac{N_{1}}{N_{2}} \frac{(1-D) T_{s}}{2 L_{m}} V_{o}
$$

- Voltage across switch during the OFF interval

$$
v_{\mathrm{sw}}=V_{d}+\frac{N_{1}}{N_{2}} V_{o}=\frac{V_{d}}{1-D}
$$

1.2 Discontinuous Conduction Mode

1.2 Discontinuous Conduction Mode

1.2 Discontinuous Conduction Mode

Mode 1: When switch Q_{1} is turned ON

- Mode 1: $0<t \leq k T$
- $\mathrm{k}=$ Duty ratio
- $\mathrm{T}=$ Switching period
- Voltage across primary winding of transformer $=V_{s}$
- D_{1} is reverse biased
- No energy is transferred from input to load $\left(R_{L}\right)$
- Filter capacitor (C) maintains the output voltage and supplies the load current (iL)
- i_{p} starts to build up \& stores energy in primary winding

$$
i_{p}=\frac{V_{s} t}{L_{p}}
$$

- $L_{p}=$ Primary magnetizing inductance

1.2 Discontinuous Conduction Mode

At the end of Mode 1, at $\mathrm{t}=\mathrm{kT}$

- Primary current reaches peak value, $I_{p(p k)}$

$$
I_{p(p k)}=i_{p}(t=k T)=\frac{V_{s} k T}{L_{p}}
$$

- Peak secondary current, $I_{\text {se }(p k)}$

$$
I_{s e(p k)}=\left(\frac{N_{p}}{N_{s}}\right) I_{p(p k)}
$$

1.2 Discontinuous Conduction Mode

Mode 2 : When switch Q_{1} is turned OFF

- Polarity of the windings reverses due to the fact that i_{p} cannot change instantaneously
- D1 turns ON
- Output capacitor (C) charges
- Secondary current decreases linearly

$$
i_{s e}=I_{s e(p k)}-\frac{V_{o}}{L_{s}} t
$$

- $L_{s}=$ Secondary magnetizing inductance
- In discontinuous mode (DCM) operation, $i_{\text {se }}$ decreases linearly to zero before the start of the next cycle

1.2 Discontinuous Conduction Mode

- Energy is transferred from the source to the output during the time interval 0 to kT only
- Input power $\left(P_{i}\right)$

$$
P_{i}=\frac{1 / 2 L_{p} I_{p(p k)}^{2}}{T}=\frac{\left(k V_{s}\right)^{2}}{2 f L_{p}}
$$

- Output power $\left(P_{o}\right)$

$$
\begin{gathered}
P_{o}=\eta P_{i}=\frac{\eta\left(V_{s} k\right)^{2}}{2 f L_{p}} \\
P_{o}=V_{o}^{2} / R_{L}
\end{gathered}
$$

- Output voltage (V_{0})

$$
V_{o}=V_{s} k \sqrt{\frac{\eta R_{L}}{2 f L_{p}}}
$$

1.2 Discontinuous Conduction Mode

- V_{o} can be maintained constant by keeping the product $V_{s} k T$ constant
- $k_{\text {max }}$ occurs at minimum supply voltage, $V_{s(\text { min })}$

$$
k_{\max }=\frac{V_{o}}{V_{s(\min)}} \sqrt{\frac{2 f L_{p}}{\eta R_{L}}}
$$

- V_{0} at $k_{\max }$

$$
V_{o}=V_{s(\min)} k_{\max } \sqrt{\frac{\eta R_{L}}{2 f L_{p}}}
$$

- Collector voltage $V_{Q 1}$ of Q_{1} is maximum when V_{s} is maximum

$$
V_{Q 1(\max)}=V_{s(\max)}+\left(\frac{N_{p}}{N_{s}}\right) V_{o}
$$

- Peak primary current, $I_{p(p k)}$ is same as maximum collector current

$$
I_{C(\max)}=I_{p(p k)}=\frac{2 P_{i}}{k V_{s}}=\frac{2 P_{o}}{\eta V_{s} k}
$$

1.2 Discontinuous Conduction Mode

- Flyback converter is used mostly in applications below 100 W
- Applications with high-output voltage at relatively low power
- Simple and low cost
- Switching device must be capable of sustaining a voltage $V_{Q 1(\max)}$

Continuous versus Discontinuous Mode of Operation

- In CCM, switch Q_{1} is turned on before the secondary current falls to zero
- CCM can provide higher power capability for the same value of peak current $I_{p(p k)}$
- For the same output power, the peak currents in the DCM are much higher than those in $\mathrm{CCM} \Longrightarrow A$ more expensive power transistor with a higher current rating is needed
- Higher secondary peak currents in the DCM can have a larger transient spike at the instant of turn-off
- Still DCM is more preferred than the continuous mode
- Inherently smaller magnetizing inductance in the discontinuous mode has a quicker response and a lower transient output voltage spike to sudden change in load current or input voltage.
- CCM has a right-half-plane zero in it's transfer function, thereby making the feedback control circuit more difficult to design

1. Fly Back Converter

Q) The average DC output voltage of the flyback circuit is $V_{0}=24 \mathrm{~V}$ at a resistive load of $R=0.8 \Omega$. The duty-cycle ratio is $k=50 \%$ and the switching frequency is $\mathrm{f}=1 \mathrm{kHz}$. The on-state voltage drops of transistors and diodes are $V_{t}=1.2 \mathrm{~V}$ and $V_{d}=0.7 \mathrm{~V}$ respectively. The turns ratio of the transformer is a $=N_{s} / N_{p}=0.25$. Determine
(a) Average input current I_{s}
(b)Efficiency η
(c) Average transistor current I_{A}
(d) Peak transistor current I_{p}
(e) RMS transistor current I_{R}
(f) Open-circuit transistor voltage $V_{o c}$
(g) Primary magnetizing inductor L_{p}

Neglect the losses in the transformer and the ripple current of the load.

1. Fly Back Converter

$$
a=N_{s} / N_{p}=0.25 \text { and } I_{o}=V_{o} / R=24 / 0.8=30 \mathrm{~A} .
$$

a. The output power $P_{o}=V_{o} I_{o}=24 \times 30=720 \mathrm{~W}$. The secondary voltage $V_{2}=$ $V_{o}+V_{d}=24+0.7=24.7 \mathrm{~V}$. The primary voltage $V_{1}=V_{2} / a=24.7 / 0.25=98.8 \mathrm{~V}$. The input voltage $V_{s}=V_{1}+V_{t}=98.8+1.2=100$ and the input power is

$$
P_{i}=V_{s} I_{s}=1.2 I_{A}+V_{d} I_{o}+P_{o}
$$

Substituting $I_{A}=I_{s}$ gives

$$
\begin{aligned}
I_{s}(100-1.2) & =0.7 \times 30+720 \\
I_{s}=\frac{741}{98.8} & =7.5 \mathrm{~A}
\end{aligned}
$$

b. $P_{i}=V_{s} I_{s}=100 \times 7.5=750 \mathrm{~W}$. The efficiency $\eta=7.5 / 750=96.0 \%$.
c. $I_{A}=I_{s}=7.5 \mathrm{~A}$.
d. $I_{p}=2 I_{A} / k=2 \times 7.5 / 0.5=30 \mathrm{~A}$.
e. $I_{R}=\sqrt{k / 3} I_{p}=\sqrt{0.5 / 3} \times 30=12.25 \mathrm{~A}$, for 50% duty cycle.
f. $V_{o c}=V_{s}+V_{2} / a=100+24.7 / 0.25=198.8 \mathrm{~V}$.
g. Using Eq. (13.2) for I_{p} gives $L_{p}=V_{s} k f I_{p}=100 \times 0.5 /\left(1 \times 10^{-3} \times 30\right)=1.67 \mathrm{mH}$.

2. Double Ended Fly Back Converter

2. Double Ended Fly Back Converter

- Two-Transistor Flyback Converter
- For relatively high-output voltage at low power applications
- T_{1} and T_{2} are turned ON and OFF simultaneously
- Diodes are used to limit the maximum switch voltage to V_{d}
- Advantages
- Voltage rating of switches is one-half of the single-transistor fly back converter topology
- Dissipative snubber across the primary winding is not needed to dissipate the energy associated with the transformer primary-winding leakage inducta! since a current path exists through the diodes connected to the primary winding

2. Double Ended Fly Back Converter

Paralleling Flyback Converters

Paralleling Flyback Converters

- Both operate at the same switching frequency
- Switches in the two converters are sequenced to turn ON a half-time period apart from one another \rightarrow Improved input and output current waveforms
- Current sharing among the parallel converters can be controlled by means of current-mode control
- Advantages
- Provides higher system reliability due to redundancy
- Increases the effective switching frequency \rightarrow Decreases current pulsations at the input and/or the output
- Allows low power modules to be standardized where a number of these can be paralleled to provide a higher power capability

3. Forward Converter

- Derived from Step-down (Buck) Converter
- Transformer magnetizing current must be considered
- Assuming transformer to be ideal, when the switch is ON
- D_{1} becomes forward biased and D_{2} reverse biased

$$
v_{L}=\frac{N_{2}}{N_{1}} V_{d}-V_{o} \quad 0<t<t_{\mathrm{on}}
$$

- v_{L} is positive $\rightarrow i_{L}$ increases linearly
- When switch is turned OFF
- D_{2} is forward biased
- inductor current i_{L} circulates through the diode D_{2}

$$
v_{L}=-V_{o} \quad t_{\text {on }}<t<T_{s}
$$

- v_{L} is negative $\rightarrow i_{L}$ decreases linearly

3.1 Basic Forward Converter

- Idealized Forward Converter

3.1 Basic Forward Converter

- Integral of inductor voltage over one time period is zero

$$
\frac{V_{o}}{V_{d}}=\frac{N_{2}}{N_{1}} D
$$

- Voltage rat
- Voltage ratio in the forward converter is proportional to the switch duty ratio D, similar to the step-down converter

3.2 Practical Forward Converter

- Transformer magnetizing current must be taken into consideration. Otherwise, the stored energy in the transformer core would result in converter failure
- Practical approach that allows the transformer magnetic energy to be recovered and fed back to the input supply \rightarrow Demagnetizing winding
- When switch is turned ON
- i_{m} increases linearly from zero to $\hat{I_{m}}$

$$
v_{1}=V_{d} \quad 0<t<t_{\mathrm{op}}
$$

- When switch is turned OFF
- $i_{1}=-i_{m}$
- $N_{1} i_{1}+N_{3} i_{3}=N_{2} i_{2}$
- D_{1} is reverse biased $\Longrightarrow i_{2}=0$

$$
i_{3}=\frac{N_{1}}{N_{3}} i_{m}
$$

- i_{3} flows through D_{3} into the input DC supply

3.2 Practical Forward Converter

3.2 Practical Forward Converter

3.2 Practical Forward Converter

- During the time interval t_{m},

$$
v_{1}=-\frac{N_{1}}{N_{3}} V_{d} \quad t_{\mathrm{on}}<t<t_{\mathrm{on}}+t_{m}
$$

- Once the transformer demagnetizes, $i_{m}=0$ and $v_{1}=0$
- Time integral of voltage v_{1} across L_{m} must be zero over one time period

$$
\frac{t_{m}}{T_{s}}=\frac{N_{3}}{N_{1}} D
$$

- If the transformer is to be totally demagnetized before the next cycle begins, the maximum value $\left(t_{m} / T_{s}\right)$, can attain is (1- D)
- Maximum duty ratio D, with a given turns ratio N_{3} / N_{1}

$$
\begin{aligned}
& \left(1-D_{\max }\right)=\frac{N_{3}}{N_{\mathrm{t}}} D_{\max } \\
& D_{\max }=\frac{1}{1+N_{3} / N_{1}}
\end{aligned}
$$

3.2 Practical Forward Converter

- With an equal number of turns for the primary and the demagnetizing windings ($N_{1}=N_{3}$), the maximum duty ratio is limited to 0.5
- Since a large voltage isolation requirement does not exist between the primary and the demagnetizing windings, these two can be wound bifilar, in order to minimize the leakage inductance between the two windings
- Demagnetizing winding requires a much smaller size of wire, since it has to carry only the demagnetizing current
- Instead of using a third demagnetizing winding, the energy in the core can be dissipated in the Zener diode connected across the switch

Forward Converter

- Transformer core is reset by reset winding
- Energy stored in the transformer core is returned to the supply \Longrightarrow Efficiency is increased
- D_{2} is forward biased when the voltage across the primary is positive. ie, when the transistor is ON
- Forward converter is operated in the continuous mode. In the discontinuous mode, the forward converter is more difficult to control because of a double pole existing at the output filter
- Operation
- Mode 1: When switch Q_{1} is turned ON
- Mode 2: When switch Q_{1} is turned OFF

Forward Converter

Forward Converters

Forward Converter

Figure 4 : Current components in primary winding

Forward Converter

Mode 1

- Switch Q_{1} is turned ON
- Voltage across the primary winding $=V_{s}$
- D_{2} is forward biased
- i_{p} starts to build up and transfers energy from the primary winding to the secondary and onto the $L_{1} C$ filter and the load R_{L} through the rectifier diode D_{2}
- Primary current, i_{p}

$$
i_{p}=\frac{N_{s}}{N_{p}} i_{s e}
$$

- Primary magnetizing current $i_{\text {mag }}$ rises linearly

$$
I_{\mathrm{mag}}=\frac{V_{s}}{L_{p}} t
$$

Forward Converter

- Total primary current i_{p}^{\prime}

$$
i_{p}^{\prime}=i_{p}+i_{\mathrm{mag}}=\frac{N_{s}}{N_{p}} i_{s e}+\frac{V_{s}}{L_{p}} t
$$

- At the end of mode 1 at $\mathrm{t}=\mathrm{kT}$, the total primary current reaches a peak value $I_{p(p k)}^{\prime}$

$$
I_{p(p k)}^{\prime}=I_{p(p k)}+\frac{V_{s} k T}{L_{p}}
$$

- $I_{p(p k)}$ is the reflected peak current of the output inductor L_{1} from the secondary

$$
I_{p(p k)}=\left(\frac{N_{p}}{N_{s}}\right) I_{L 1(p k)}
$$

Forward Converter

- Voltage developed across the secondary winding

$$
V_{s e}=\frac{N_{s}}{N_{p}} V_{s}
$$

- Voltage across the output inductor L_{1} is $\left(V_{s e}-V_{o}\right) \rightarrow i_{L 1}$ increases linearly

$$
\frac{d i_{L 1}}{d t}=\frac{V_{s}-V_{o}}{L_{1}}
$$

- Peak output inductor current $I_{L 1(p k)}$ at $\mathrm{t}=\mathrm{kT}$,

$$
I_{L 1(p k)}=I_{L 1}(0)+\frac{\left(V_{s}-V_{o}\right) k T}{L_{1}}
$$

Forward Converter

Mode 2

- Q_{1} is turned OFF
- Polarity of the transformer voltage reverses
- D_{2} turns OFF
- D_{1} and D_{3} turn ON
- Energy is delivered to R_{L} through the inductor L_{1}
- D_{1} and tertiary winding provide a path for the magnetizing current returning to the input
- $i_{L 1}\left(=i_{D 3}\right)$ decreases linearly

$$
i_{L 1}=i_{D 3}=I_{L 1(p k)}-\frac{V_{o}}{L_{1}} t \quad \text { for } 0<t \leq(1-k) T
$$

- In continuous conduction mode operation,

$$
I_{L 1}(0)=i_{L 1}(t=(1-k) T)=I_{L 1(p k)}-V_{0}(1-k) T / L_{1}
$$

Forward Converter

- Output voltage $\left(V_{o}\right)=$ Time integral of secondary winding voltage

$$
V_{o}=\frac{1}{T} \int_{0}^{k T} \frac{N_{s}}{N_{p}} V_{s} d t=\frac{N_{s}}{N_{p}} V_{s} k
$$

- During turn-ON, maximum collector current $I_{C(\max)}=I_{p(p k)}^{\prime}$

$$
I_{C(\max)}=I_{p(p k)}^{\prime}=\left(\frac{N_{p}}{N_{s}}\right) I_{L 1(p k)}+\frac{V_{s} k T}{L_{p}}
$$

- During turn-OFF, maximum collector voltage, $V_{Q 1(\max)}=$ Maximum input voltage, $V_{i(\max)}+$ Maximum voltage across the tertiary, $V_{r(\max)}$

$$
V_{Q 1(\max)}=V_{s(\max)}+V_{r(\max)}=V_{s(\max)}\left(1+\frac{N_{p}}{N_{r}}\right)
$$

- Time integral of input voltage when Q_{1} is ON to the clamping voltage V_{r} when Q_{1} is OFF

$$
V_{s} k T=V_{r}(1-k) T
$$

Forward Converter

- Maximum duty cycle, $k_{\max }$

$$
k_{\max }=\frac{1}{1+N_{r} / N_{p}}
$$

- $k_{\text {max }}$ depends on the turns ratio between the resetting winding and the primary one
- Duty cycle (k) must be less than the maximum duty cycle ($k_{\max }$) to avoid saturating the transformer
- Transformer magnetizing current must be reset to zero at the end of each cycle. Otherwise, the transformer can be driven into saturation, which can cause damage to the switching device
- Tertiary winding is added to the transformer so that the magnetizing current can return to the input source V_{s} when the transistor turns OFF
- Forward converter is widely used with output power below 200 W

Flyback versus Forward Converter

Forward Converter

- A large load resistance is permanently connected across the output terminals of forward converter
- Forward converter requires a minimum load at the output. Otherwise, excess output voltage can be produced
- Since forward converter does not store energy in the transformer, for the same output power level, the size of the transformer can be made smaller than that for the flyback.
- Output current is reasonably constant due to the action of the output inductor and the freewheeling diode $D_{3} \rightarrow$ Output filter capacitor can be made smaller and it's ripple current rating can be much lower than that required for the flyback

Forward Converter

Q) The average DC output voltage of the forward converter circuit is V_{o} $=24 \mathrm{~V}$ at a resistive load of $\mathrm{R}=0.8 \Omega$. The ON -state voltage drops of transistors and diodes are $V_{t}=1.2 \mathrm{~V}$ and $V_{d}=0.7 \mathrm{~V}$ respectively. The duty cycle is $k=40 \%$ and the switching frequency is $f=1 \mathrm{kHz}$. The DC supply voltage $V_{s}=12 \mathrm{~V}$. The turns ratio of the transformer is a $=N_{s} / N_{p}$ $=0.25$. Determine
(a) Average input current I_{s}
(b) Efficiency η
(c) Average transistor current I_{A}
(d) Peak transistor current I_{p}
(e) RMS transistor current I_{R}
(f) Open-circuit transistor voltage $V_{o c}$
(g) Primary magnetizing inductor L_{p} for maintaining the peak-to-peak ripple current to 5% of the average input DC current
(h) Output inductor L_{1} for maintaining the peak-to-peak ripple current to 4% of its average value. Neglect the losses in the transformer and the ripple content of the output voltage is 3%.

Forward Converter

$$
a=N_{s} / N_{p}=0.25 \text { and } I_{o}=V_{o} / R=24 / 0.8=30 \mathrm{~A} .
$$

a. The output power $P_{o}=V_{o} I_{o}=24 \times 30=720 \mathrm{~W}$. The secondary voltage $V_{2}=$ $V_{o}+V_{d}=24+0.7=24.7 \mathrm{~V}$. The primary voltage is $V_{1}=V_{s}-V_{t}=12-1.2=$ 10.8 V . The turns ratio is $a=V_{2} / V_{1}=24.7 / 10.8=2.287$. The input power is $P_{i}=V_{s} I_{s}=V_{t} k I_{s}+V_{d}(1-k) I_{s}+V_{d} I_{o}+P_{o}$ which gives

$$
I_{s}=\frac{V_{d} I_{o}+P_{o}}{V_{s}-V_{t} k-V_{d}(1-k)}=\frac{0.7 \times 30+720}{12-1.2 \times 0.4-0.7 \times 0.6}=66.76 \mathrm{~A}
$$

b. $P_{i}=V_{s} I_{s}=12 \times 66.756=801 \mathrm{~W}$. The efficiency $\eta=720 / 801=89.9 \%$.
c. $I_{A}=k I_{s}=0.4 \times 66.76=26.7 \mathrm{~A}$.
d. $\Delta I_{p}=0.05 \times I_{s}=0.05 \times 66.76=3.353 \mathrm{~A}$.
e. $I_{R}=\sqrt{k}\left[I_{p}^{2}+\Delta I_{r} / 3+\Delta I_{p} I_{p}\right]^{1 / 2}=\sqrt{0.4} \times\left[66.76^{2}+3.35 / 3+3.35 \times 66.76\right]^{1 / 2}=$ 44.3 A .
f. $V_{o c}=V_{s}+V_{2} / a=22.8 \mathrm{~V}$.
g. $\Delta I_{L 1}=0.04 \times I_{o}=0.04 \times 30=1.2 \mathrm{~A}$ and $\Delta V_{o}=0.03 \times V_{o}=0.03 \times 24=0.72 \mathrm{~V}$.

Using Eq. (13.18), $L_{1}=\frac{\Delta V_{o} k}{f \Delta I_{L 1}}=\frac{0.72 \times 0.4}{1 \times 10^{3} \times 1.2}=0.24 \mathrm{mH}$
h. Using (13.15), $\Delta I_{p}=a \times \Delta I_{L 1}+\left(V_{s}-V_{t}\right) k T / L_{p}$, which gives

$$
L_{p}=\frac{\left(V_{s}-V_{t}\right) k}{f\left(\Delta I_{p}-a \times \Delta I_{L 1}\right)}=\frac{(12-1.2) \times 0.4}{1 \times 10^{3} \times(3.353-2.287 \times 1.2)}=7.28 \mathrm{mH}
$$

4. Double Ended Forward Converter

4. Double Ended Forward Converter

- Two-Switch Forward Converter
- Two switches are turned ON and OFF simultaneously
- Voltage rating of each of the switches is one-half of that in a singleswitch topology
- Diodes are used to restrict the maximum collector voltage to $V_{d} \rightarrow$ Switches with low-voltage rating can be used
- When the switches are off, the magnetizing current flows into the input supply through the diodes, thus eliminating the need for a separate demagnetizing winding or snubbers

4. Double Ended Forward Converter

Paralleling Forward Converters

Paralleling Forward Converters

- Switches are sequenced to turn ON a half-time period apart from one another
- At the output, a common filter can be used \rightarrow Significantly reduces the size of the output filter capacitor and inductor

5. Push-Pull Converter

5. Push-Pull Converter

5. Push-Pull Converter

- Push-Pull inverter is used to produce a square-wave ac at the input of the high-frequency transformer
- Center-tapped secondary of transformer results in only one diode voltage drop on the secondary side

Working

- When T_{1} is ON
- D_{1} conducts
- D_{2} gets reverse biased
- i_{L} through D_{1} increases linearly

$$
v_{L}=\frac{N_{2}}{N_{1}} V_{d}-V_{o} \quad 0<t<t_{\mathrm{cn}}
$$

- When both switches are OFF
- Interval Δ
- i_{L} splits equally between two secondary half-windings
- $v_{o i}=0$

$$
v_{L}=-V_{o}
$$

5. Push-Pull Converter

$$
i_{D 1}=i_{D 2}=\frac{1}{2} i_{L}
$$

- When T_{2} is ON
- Waveform repeat with a period of $\frac{1}{2} T_{s}$

$$
t_{\text {on }}+\Delta=\frac{1}{2} T_{s}
$$

- Time integral of inductor voltage during one repetition period (ie, $\frac{1}{2} T_{s}$) is zero

$$
\frac{V_{o}}{V_{d}}=2 \frac{N_{2}}{N_{\mathrm{t}}} D \quad 0<D<0.5
$$

- $\mathrm{D}=t_{o n} / T_{s}$, duty ratio of switches T_{1} and T_{2}
- To avoid both switches ON simultaneously, D is kept smaller than 0.5

5. Push-Pull Converter

5. Push-Pull Converter

- When Q_{1} is turned on, V_{s} appears across one-half of the primary
- When Q_{2} is turned on, V_{s} is applied across the other half of the transformer
- Voltage of primary winding swings from $-V_{s}$ to $+V_{s}$
- Average current through the transformer should ideally be zero
- Average output voltage,

$$
V_{o}=V_{2}=\frac{N_{s}}{N_{p}} V_{1}=a V_{1}=a V_{s}
$$

- Q_{1} and Q_{2} operate with $D=50 \%$
- $V_{o c}=2 V_{s}$
- Average current of a transistor, $I_{A} I_{s} / 2$
- Peak transistor current, $I_{p}=I_{s}$
- Since open-circuit transistor voltage is twice the supply voltage, pushpull configuration is suitable for low-voltage applications

Problem

Q) The average (DC) output voltage of the pushpull circuit is $V_{o}=24 \mathrm{~V}$ at a resistive load of $R=0.8 \Omega$. The on-state voltage drops of transistors and diodes are $V_{t}=1.2 \mathrm{~V}$ and $V_{d}=0.7 \mathrm{~V}$ respectively. The turns ratio of the transformer is a $=N_{s} / N_{p}=0.25$. Determine
(a) Average input current, I_{s}
(b) Efficiency, η
(c) Average transistor current I_{A}
(d) Peak transistor current, I_{p}
(e) RMS transistor current, I_{R}
(f) Open-circuit transistor voltage $V_{o c}$

Neglect the losses in the transformer and the ripple current of the load and input supply is negligible. Assume duty cycle $\mathrm{k}=0.5$

Problem

$$
a=N_{s} / N_{p}=0.25 \text { and } I_{o}=V_{o} / R=24 / 0.8=30 \mathrm{~A}
$$

a. The output power $P_{o}=V_{o} I_{o}=24 \times 30=720 \mathrm{~W}$. The secondary voltage $V_{2}=$ $V_{o}+V_{d}=24+0.7=24.7 \mathrm{~V}$. The primary voltage $V_{1}=V_{2} / a=24.7 / 0.25=98.8 \mathrm{~V}$. The input voltage $V_{s}=V_{1}+V_{t}=98.8+1.2=100$ and the input power is

$$
P_{i}=V_{s} I_{s}=1.2 I_{A}+1.2 I_{A}+V_{d} I_{o}+P_{o}
$$

Problem

Substituting $I_{A}=I_{s} / 2$ gives

$$
\begin{gathered}
I_{s}(100-1.2)=0.7 \times 30+720 \\
I_{s}=\frac{741}{98.8}=7.5 \mathrm{~A}
\end{gathered}
$$

b. $P_{i}=V_{s} I_{s}=100 \times 7.5=750 \mathrm{~W}$. The efficiency $\eta=720 / 750=96.0 \%$
c. $I_{A}=I_{s} / 2=7.5 / 2=3.75 \mathrm{~A}$.
d. $I_{p}=I_{s}=7.5 \mathrm{~A}$.
e. $I_{R}=\sqrt{k} I_{p}=\sqrt{0.5} \times 7.5=5.30 \mathrm{~A}$, for 50% duty cycle.
f. $V_{o c}=2 V_{s}=2 \times 100=200 \mathrm{~V}$.

6. Half Bridge Converter

6. Half Bridge Converter

6. Half Bridge Converter

- Derived from Buck Converter
- C_{1} and C_{2} establish a voltage midpoint zero and input DC voltage
- Switches T_{1} and T_{2} are turned ON alternatively, each for an interval of $t_{\text {on }}$
- When T_{1} is ON

$$
\begin{gathered}
v_{o i}=\left(N_{2} / N_{1}\right)\left(V_{d} / 2\right) \\
v_{L}=\frac{N_{2}}{N_{1}} \frac{V_{d}}{2}-V_{o} \quad 0<t<t_{\mathrm{on}}
\end{gathered}
$$

- When both switches are OFF
- Interval Δ
- i_{L} splits equally between the two secondary halves
- $v_{o i}=0$

$$
v_{L}=-V_{o} \quad t_{\mathrm{on}}<t<t_{\mathrm{on}}+\Delta
$$

6. Half Bridge Converter

- In steady state, waveforms repeat with a period $\frac{1}{2} T_{s}$

$$
t_{\mathrm{on}}+\Delta=\frac{1}{2} T_{s}
$$

- Time integral of inductor voltage during one repetition period (ie, $\frac{1}{2} T_{s}$) is zero

$$
\frac{V_{o}}{V_{d}}=\frac{N_{2}}{N_{1}} D
$$

- $\mathrm{D}=t_{o n} / T_{s}$
- $0<D<0.5$
- Average $v_{o i}=V_{o}$
- Diodes in antiparallel with Switches T_{1} and T_{2} are used for switch protection

6. Half Bridge Converter

6. Half Bridge Converter

6. Half Bridge Converter

- Half-bridge converter: Two back-to-back forward converters that are fed by the same input voltage, each delivering power to the load at each alternate half-cycle
- C_{1} and C_{2} are placed across the input terminals such that the voltage across the primary winding always is half of the input voltage ie, $V_{s} / 2$
- Operation
- Mode 1: $Q_{1}=$ ON \& $Q_{2}=$ OFF
- Mode 2 : Both $Q_{1} \& Q_{2}$ are OFF
- Mode $3: Q_{1}=$ OFF \& $Q_{2}=O N$
- Mode 4 : Both $Q_{1} \& Q_{2}$ are OFF

6. Half Bridge Converter

Mode 1

- $Q_{1}=O N$ and $Q_{2}=O F F$
- D_{1} conducts and D_{2} is reverse biased
- $V_{p}=V_{s} / 2$
- i_{p} starts to build up and stores energy in the primary winding
- Voltage across the secondary winding,

$$
V_{s e}=\frac{N_{s 1}}{N_{p}}\left(\frac{V_{s}}{2}\right)
$$

- Voltage across the output inductor,

$$
v_{L 1}=\frac{N_{s 1}}{N_{p}}\left(\frac{V_{s}}{2}\right)-V_{o}
$$

- Inductor current $i_{L 1}$ increases linearly

$$
\frac{d i_{L 1}}{d t}=\frac{v_{L 1}}{L_{1}}=\frac{1}{L_{1}}\left[\frac{N_{s 1}}{N_{p}}\left(\frac{V_{s}}{2}\right)-V_{o}\right]
$$

6. Half Bridge Converter

- Peak inductor current $I_{L 1(p k)}$ at the end of mode 1 at $t=k T$

$$
I_{L 1(p k)}=I_{L 1}(0)+\frac{1}{L_{1}}\left[\frac{N_{s 1}}{N_{p}}\left(\frac{V_{s}}{2}\right)-V_{o}\right] k T
$$

Mode 2

- For $\mathrm{kT} \leq \mathrm{t} \leq \mathrm{T} / 2$
- Both Q_{1} and Q_{2} are OFF
- D_{1} and D_{2} are forced to conduct the magnetizing current that resulted during mode 1
- Rate of fall of $i_{L 1}$,

$$
\frac{d i_{L 1}}{d t}=-\frac{V_{o}}{L_{1}} \quad \text { for } 0<t \leq(0.5-k) T
$$

- $I_{L 1}(0)=i_{L 1}[t=(0.5-k) T]=I_{L 1(p k)}-V_{o}(0.5-k) T / L_{1}$

6. Half Bridge Converter

Mode 3 and 4

- During mode $3, Q_{2}$ is $O N$ and Q_{1} is OFF, D_{1} is reverse biased, and D_{2} conducts
- $V_{p}=-V_{s} / 2$
- Mode 4 is similar to mode 2
- Output voltage V_{o},

$$
\begin{gathered}
V_{o}=2 \times \frac{1}{T}\left[\int_{0}^{k T}\left(\frac{N_{s 1}}{N_{p}}\left(\frac{V_{s}}{2}\right)-V_{o}\right) d t+\int_{T / 2}^{T / 2+k T}-V_{o} d t\right] \\
V_{o}=\frac{N_{s 1}}{N_{p}} V_{s} k
\end{gathered}
$$

- Output power P_{o},

$$
P_{o}=V_{o} I_{L}=\eta P_{i}=\eta \frac{V_{S} I_{p(\text { avg })} k}{2}
$$

6. Half Bridge Converter

Mode 3 and 4

- Average primary current,

$$
I_{p(\mathrm{avg})}=\frac{2 P_{o}}{\eta V_{s} k}
$$

- Assuming that the secondary load current reflected to the primary side is much greater than the magnetizing current, the maximum collector currents for Q_{1} and Q_{2} are given by

$$
I_{C(\max)}=I_{p(\mathrm{avg})}=\frac{2 P_{o}}{\eta V_{s} k_{\max }}
$$

- Maximum collector voltages for Q_{1} and Q_{2} during turn-off are given by

$$
V_{C(\max)}=V_{s(\max)}
$$

- Maximum duty cycle k can never be greater than 50%
- Half-bridge converter is widely used for medium-power applications (output power ranging from 200 to 400 W)

Forward versus Half-bridge Converter

- In half-bridge converter, the voltage stress imposed on the power transistor is subject to only the input voltage and is only half of that in a forward converter
- Output power of a half-bridge is double to that of a forward converter for the same semiconductor devices and magnetic core
- Since half-bridge is more complex, flyback or forward converter is a better choice and more cost-effective
- Half-bridge converter is unsuitable for high-power applications

7. Full Bridge Converter

7. Full Bridge Converter

7. Full Bridge Converter

- $\left(T_{1}, T_{2}\right)$ and $\left(T_{3}, T_{4}\right)$ are switched as pairs alternatively
- When $\left(T_{1}, T_{2}\right)$ or $\left(T_{3}, T_{4}\right)$ are ON

$$
\begin{gathered}
v_{o i}=\left(N_{2} / N_{1}\right) V_{d} \\
v_{L}=\frac{N_{2}}{N_{1}} V_{d}-V_{o} \quad 0<t<t_{\mathrm{on}}
\end{gathered}
$$

- When both $\left(T_{1}, T_{2}\right)$ and $\left(T_{3}, T_{4}\right)$ are OFF

$$
v_{L}=-V_{o} \quad t_{\mathrm{on}}<t<t_{\mathrm{on}}+\Delta
$$

- In steady state, time integral of the inductor voltage over one time period is zero

$$
\frac{V_{o}}{V_{d}}=2 \frac{N_{2}}{N_{1}} D
$$

7. Full Bridge Converter

- $t_{o n}+\Delta=\frac{1}{2} T_{s}$
- $\mathrm{D}=\frac{t_{o n}}{T_{s}}$
- $0<D<0.5$
- Diodes are connected in antiparallel to the switches to provide a path to the current due to the energy associated with the primary-winding leakage inductance

Comparison : Full-bridge \& Half-bridge Converters

- Comparison of the full-bridge (FB) converter with half-bridge (HB) converter for identical input and output voltages and power ratings requires

$$
\left(\frac{N_{2}}{N_{1}}\right)_{H B}=2\left(\frac{N_{2}}{N_{1}}\right)_{F B}
$$

- Neglecting the ripple in the current through the filter inductor at the output and assuming the transformer magnetizing current to be negligible in both circuits, the switch currents are given by

$$
\left(I_{\mathrm{sw}}\right)_{H B}=2\left(I_{\mathrm{sw}}\right)_{F B}
$$

- In both converters, the input V_{d}, appears across the switches
- The switches are required to carry twice as much current in the halfbridge compared with the full-bridge converter \Longrightarrow Large power ratings
- It is advantageous to use a full-bridge over a half-bridge converter to

7. Full Bridge Converter

7. Full Bridge Converter

7. Full Bridge Converter

- Operation
- Mode 1: Q1 and Q_{4} are ON while Q_{2} and Q_{3} are OFF
- Mode 2 : All switches are OFF
- Mode 3: Q_{1} and Q_{4} are OFF, while Q_{2} and Q_{3} are ON
- Mode 4 : All switches are OFF
- C_{1} is used to balance the volt-second integrals during the two half-cycles and prevent the transformer from becoming driven into saturation

7. Full Bridge Converter

Mode 1

- Both Q_{1} and Q_{4} are turned ON
- Voltage across secondary winding,

$$
V_{s e}=\frac{N_{s}}{N_{p}} V_{s}
$$

- Voltage across the output inductor L_{1},

$$
v_{L 1}=\frac{N_{s}}{N_{p}} V_{s}-V_{o}
$$

- Inductor current $i_{L 1}$ increases linearly

$$
\frac{d i_{L 1}}{d t}=\frac{v_{L 1}}{L_{1}}=\frac{1}{L_{1}}\left[\frac{N_{s}}{N_{p}} V_{s}-V_{o}\right]
$$

- Peak inductor current $I_{L 1(p k)}$ at the end of mode 1 at $\mathrm{t}=\mathrm{kT}$,

$$
I_{L 1(p k)}=I_{L 1}(0)+\frac{1}{L_{1}}\left[\frac{N_{s}}{N_{p}} V_{s}-V_{o}\right] k T
$$

7. Full Bridge Converter

Mode 2

- For $\mathrm{kT} \leq \mathrm{t} \leq \mathrm{T} / 2$
- All switches are OFF
- D_{1} and D_{2} are forced to conduct the magnetizing current at the end of mode 1
- Rate of fall of $i_{L 1}$,

$$
\frac{d i_{L 1}}{d t}=-\frac{V_{o}}{L_{1}} \quad \text { for } 0<t \leq(0.5-k) T
$$

- $I_{L 1(0)}=i_{L 1}[t=(0.5-k) T]=I_{L 1(p k)}-V_{0}(0.5-k) T / L_{1}$

7. Full Bridge Converter

Mode 3 and 4

- During mode $3, Q_{2}$ and Q_{3} are $O N$, while Q_{1} and Q_{4} are OFF
- D_{1} is reverse biased and D_{2} conducts
- $V_{p}=V_{s}$
- Mode 4 is similar to mode 2
- Output voltage V_{o},

$$
\begin{gathered}
V_{o}=2 \times \frac{1}{T}\left[\int_{0}^{k T}\left(\frac{N_{s}}{N_{p}} V_{s}-V_{o}\right) d t+\int_{T / 2}^{T / 2+k T}-V_{o} d t\right] \\
V_{o}=\frac{N_{s}}{N_{p}} 2 V_{s} k
\end{gathered}
$$

- Output power P_{o},

$$
P_{o}=\eta P_{i}=\eta V_{s} I_{p(\text { avg })} k
$$

7. Full Bridge Converter

Mode 3 and 4

- Average primary current,

$$
I_{p(\text { avg })}=\frac{P_{o}}{\eta V_{s} k}
$$

- Neglecting the magnetizing current, the maximum collector currents for Q_{1}, Q_{2}, Q_{3} and Q_{4} are given by

$$
I_{C(\max)}=I_{p(\mathrm{avg})}=\frac{P_{o}}{\eta V_{s} k_{\max }}
$$

- Maximum collector voltage for Q_{1}, Q_{2}, Q_{3} and Q_{4} during turn-off is given by

$$
V_{C(\max)}=V_{s(\max)}
$$

7. Full Bridge Converter

Mode 3 and 4

- Full-bridge regulator is used for high-power applications ranging from several hundred to several thousand kilowatts
- It has the most efficient use of magnetic core and semiconductor switches
- Full bridge is complex and therefore expensive to build, and is only justified for high-power applications, typically over 500 W

Half-bridge versus Full-bridge Converter

- Full bridge uses four power switches instead of two, as in the half bridge
- Full bridge converter requires two more gate drivers and secondary windings in the pulse transformer for the gate control circuit
- For the same output power, the maximum collector current of a full bridge is only half that of the half bridge
- Output power of a full bridge is twice that of a half bridge with the same input voltage and current

8. Current Source DC-DC Converter

Figure 5: Current Source Converter ($\mathrm{D}>0.5$)

8. Current Source DC-DC Converter

- The dc-dc converters with a voltage at their input are referred as voltage source converters
- By inserting an inductor at the input of push-pull converter and operating the switches at a duty ratio (D) of greater than 0.5 , the converter is fed through a current source
- $D>0.5 \Longrightarrow$ Simultaneous conduction of the top switches, which was to be strictly avoided in the normal voltage source push-pull converter

Working

- When both switches are ON, the voltage across each primary halfwinding becomes zero
- The input current i_{d} builds up linearly and the energy is stored in the input inductor
- When only one of the two switches is conducting, the input voltage and the stored energy in the input inductor supply the output stage
- Circuit operates in a manner similar to the step-up converter

Disadvantage

- Current-source converters have a low power-to-weight ratio compared to voltage-source converters
(1) Mohan, Undeland, Robbins, "Power Electronics Converters Application and Design", Wiley-India
(2) Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Pearson Education
(3) Abraham Pressman, "Switching Power supply Design", McGraw Hill

Thank You

*for private circulation only

Switched Mode Power Converters

 (EE364)
S6-EEE

by

Prof. Dinto Mathew

Asst. Professor
Dept. of EEE, MACE

Module 4 - Overview

(1) Switched Mode DC to AC Converter
(2) 1-phase Full-bridge Inverter

- PWM with Bipolar Voltage Switching
- PWM with Unipolar Voltage Switching
- Output Control by Voltage Cancellation
- Switch Utilization in Full Bridge Inverters
(3) 3-phase Voltage Source Inverter
- Sine PWM Inverter
- Square Wave Operation
- Switch Utilization in 3-phase Inverter

1. Switched Mode DC to AC Converter

- Switch-mode DC to AC Inverters

Figure 1: AC Motor Drive

1. Switched Mode DC to AC Converter

- Switch-mode DC to AC Inverters

Figure 1: AC Motor Drive

- To produce sinusoidal AC output whose magnitude and frequency can both be controlled
- AC motor drives
- Diode rectifier \rightarrow DC voltage is obtained by rectifying and filtering the line voltage
- Switched Mode DC to AC inverter \rightarrow AC output
- Power flow is reversible
- Uninterruptible AC power supplies

1. Switched Mode DC to AC Converter

Figure 2: Switch-mode converters for motoring and regenerative braking in ac motor drive

- Regenerative braking
- Energy recovered from the motor load inertia is fed back to the utility grid
- Two-quadrant converter with a reversible dc current, which can operate as a rectifier and as an inverter
- Two back-to-back connected line-frequency thyristor converters

1. Switched Mode DC to AC Converter

- Voltage Source Inverters (VSI) \rightarrow Input to switch-mode inverters is a DC voltage source
(1) Pulse-width-modulated Inverters
- Input DC voltage is constant in magnitude
- Inverter must control the magnitude and the frequency of the AC output voltages
- Pulse-width Modulation of Inverter \rightarrow Sinusoidal PWM
(2) Square-wave Inverters
- Input DC voltage is controlled in order to control the magnitude of the output AC voltage
- Hence inverter has to control only the frequency of the output voltage
- Output AC voltage has a waveform similar to a square wave \Longrightarrow Square wave inverter
(3) Single-phase inverters with voltage cancellation
- These inverters combine the characteristics PWM and Square wave inverters
- Control the magnitude and the frequency of the inverter output voltage, even though the input to the inverter is a constant DC voltage and the inverter switches are not pulse-width modulated
- Voltage cancellation technique works only with single-phase inverters and not with three-phase inverter

1. Switched Mode DC to AC Converter

- Current Source Inverters (CSI) \rightarrow DC input to the inverter is a dc current source
- Very high power AC motor drives

Basic Concepts of Switched Mode Inverters

Basic Concepts of Switched Mode Inverters

Basic Concepts of Switched Mode Inverters

- Single-phase inverter
- Output voltage of the inverter is filtered \Longrightarrow sinusoidal
- Inverter supplies an inductive load
- Output waveforms
- Interval 1: v_{o} and i_{o} are both positive
- Interval 3: v_{o} and i_{o} are both negative
- During intervals 1 and 3 , the instantaneous power flow $p_{o} i e,\left(=v_{o} i_{o},\right)$ is from the DC side to the AC side, corresponding to an inverter mode of operation
- In intervals 2 and $4 p_{o}$ flows from the $A C$ side to the DC side of the inverter, corresponding to a rectifier mode of operation
- Switch-mode inverter is capable of operating in all four quadrants of the $i_{o}-v_{0}$

Pulse Width Modulated Switching Scheme

- For an inverter to produce sinusoidal output
- A sinusoidal control signal at the desired frequency is compared with a triangular waveform
- Frequency of the triangular waveform establishes the inverter switching frequency (f_{s})
- Frequency and amplitude ($\widehat{V}_{t r i}$) of triangular waveform are kept constant
- $v_{\text {control }}$ has a frequency f_{i}, which is the desired fundamental frequency of the inverter voltage output
- Amplitude Modulation Ratio (m_{a})

$$
m_{a}=\frac{\hat{V}_{\text {control }}}{\hat{V}_{\mathrm{tr}}}
$$

- Frequency Modulation Ratio (m_{f})

$$
m_{f}=\frac{f_{s}}{f_{i}}
$$

Pulse Width Modulated Switching Scheme

Pulse Width Modulated Switching Scheme

Pulse Width Modulated Switching Scheme

- In the inverter, switches are controlled such that

$$
\begin{array}{lll}
v_{\text {control }}>v_{\text {tir }}, & T_{A+} \text { is on, } & v_{A o}=\frac{1}{2} V_{d} \\
v_{\text {concool }}<v_{\text {tio }}, & T_{A-} \text { is on, } & v_{A o}=-\frac{1}{2} V_{d}
\end{array}
$$

Pulse Width Modulated Switching Scheme

- Output voltage $\left(V_{A o}\right)$ fluctuates between $\left(\frac{1}{2} V_{d}\right)$ and $\left(\frac{-1}{2} V_{d}\right)$ Harmonic spectrum of $V_{A o}$ shows that
- Peak amplitude of the fundamental-frequency component $\left(\hat{V}_{A_{o}}\right)_{1}$ is m_{a} times $\left(\frac{1}{2} V_{d}\right)$

$$
V_{A o}=\frac{v_{\mathrm{controt}}}{\hat{V}_{\mathrm{tri}}} \frac{V_{d}}{2} \quad v_{\mathrm{control}} \leq \hat{V}_{\mathrm{tri}}
$$

- Let $v_{\text {control }}$ varies sinusoidally at the frequency $\mathrm{f}=\omega_{1} / 2 \pi$

$$
\begin{gathered}
v_{\text {control }}=\hat{V}_{\text {control }} \sin \omega_{1} t \\
\hat{V}_{\text {control }} \leq \hat{V}_{\text {tri }}
\end{gathered}
$$

Pulse Width Modulated Switching Scheme

Pulse Width Modulated Switching Scheme

$$
\begin{aligned}
\left(v_{A O}\right)_{1} & =\frac{\hat{V}_{\text {control }}}{\hat{V}_{\text {tri }}} \sin \omega_{1} t \frac{V_{d}}{2} \\
& =m_{a} \sin \omega_{1} t \frac{V_{d}}{2} \text { for } m_{a} \leq 1.0
\end{aligned}
$$

Range of m_{a} from 0 to 1 is referred to as linear range

$$
\left(\hat{V}_{A o}\right)_{1}=m_{a} \frac{V_{d}}{2} \quad m_{a} \leq 1.0
$$

- Harmonics in the inverter output voltage waveform appear as sidebands, centered around the switching frequency and its multiples ie, around harmonics $m_{f}, 2 m_{f}, 3 m_{f}$, and so on
- This pattern holds true for all values of m_{a} in the range 0-1
- Frequency modulation ratio $m_{f} \leq 9$

$$
f_{h}=\left(j m_{f} \pm k\right) f_{1} \quad h=j\left(m_{f}\right) \pm k
$$

Pulse Width Modulated Switching Scheme

$$
v_{A N}=v_{A o}+\frac{1}{2} V_{d} \quad\left(\hat{V}_{A N}\right)_{h}=\left(\hat{V}_{A o}\right)_{n}
$$

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| h | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |
| 1 | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 |

Fundamental

m_{f}	1.242	1.15	1.006	0.818	0.601
$m_{f} \pm 2$	0.016	0.061	0.131	0.220	0.318
$m_{f} \pm 4$					0.018
$2 m_{f} \pm 1$	0.190	0.326	0.370	0.314	0.181
$2 m_{f} \pm 3$		0.024	0.071	0.139	0.212
$2 m_{f} \pm 5$				0.013	0.033
$3 m_{f}$	0.335	0.123	0.083	0.171	0.113
$3 m_{f} \pm 2$	0.044	0.139	0.203	0.176	0.062
$3 m_{f} \pm 4$		0.012	0.047	0.104	0.157
$3 m_{f} \pm 6$				0.016	0.044
$4 m_{f} \pm 1$	0.163	0.157	0.008	0.105	0.068
$4 m_{f} \pm 3$	0.012	0.070	0.132	0.115	0.009
$4 m_{f} \pm 5$			0.034	0.084	0.119
$4 m_{f} \pm 7$				0.017	0.050
$N n t i x$					

Pulse Width Modulated Switching Scheme

- m_{f} should be an odd integer
- It results in an odd symmetry $[\mathrm{f}(-\mathrm{t})=-\mathrm{f}(\mathrm{t})]$ as well as a half-wave symmetry $\left[\mathrm{f}(\mathrm{t})=-\mathrm{f}\left(\mathrm{t}+1 / 2 T_{1}\right)\right]$ with the time origin
- Only odd harmonics are present and the even harmonics disappear from the waveform of V_{A}
- Only the coefficients of the sine series in the Fourier analysis are finite and those for the cosine series are zero

Problem

Q) For a single phase half bridge inverter, $V_{d}=300 \mathrm{~V}, m_{a}=0.8, m_{f}=$ 39 and the fundamental frequency is 47 Hz . Calculate the rms values of the fundamental-frequency voltage and some of the dominant harmonics in $V_{A o}$.

$$
\begin{aligned}
\left(V_{A o}\right)_{h} & =\frac{1}{\sqrt{2}} \frac{V_{d}}{2} \frac{\left(\hat{V}_{A o}\right)_{h}}{V_{d} / 2} \\
& =106.07 \frac{\left(\hat{V}_{A o}\right)_{h}}{V_{d} / 2}
\end{aligned}
$$

$$
\begin{aligned}
\left(V_{A O}\right)_{1} & =106.07 \times 0.8=84.86 \mathrm{~V} \text { at } 47 \mathrm{~Hz} \\
\left(V_{A o}\right)_{37} & =106.07 \times 0.22=23.33 \mathrm{~V} \text { at } 1739 \mathrm{~Hz} \\
\left(V_{A o}\right)_{39} & =106.07 \times 0.818=86.76 \mathrm{~V} \text { at } 1833 \mathrm{~Hz} \\
\left(V_{A o}\right)_{41} & =106.07 \times 0.22=23.33 \mathrm{~V} \text { at } 1927 \mathrm{~Hz} \\
\left(V_{A o}\right)_{77} & =106.07 \times 0.314=33.31 \mathrm{~V} \text { at } 3619 \mathrm{~Hz} \\
\left(V_{A o}\right)_{79} & =106.07 \times 0.314=33.31 \mathrm{~V} \text { at } 3713 \mathrm{~Hz}
\end{aligned}
$$

Pulse Width Modulated Switching Scheme

Over-modulation ($m_{a}<\mathbf{1}$)

- To increase further the amplitude of the fundamental frequency component in the output voltage, m_{a} is increased beyond 1.0 \qquad Over-modulation
- Over-modulation causes the output voltage to contain many more harmonics in the side-bands as compared with the linear range (with $m_{a} \leq 1$)
- With over-modulation, the amplitude of the fundamental- frequency component does not vary linearly with the amplitude modulation ratio m_{a}

Pulse Width Modulated Switching Scheme

Pulse Width Modulated Switching Scheme

Square Wave Switching Scheme

- Each switch of the inverter leg is ON for one half-cycle $\left(180^{\circ}\right)$ of the desired output frequency
- Peak value of the fundamental-frequency

$$
\begin{gathered}
\left(\hat{V}_{A o}\right)_{1}=\frac{4}{\pi} \frac{V_{d}}{2}=1.273\left(\frac{V_{d}}{2}\right) \\
\left(\hat{V}_{A o}\right)_{h}=\frac{\left(\hat{V}_{A o}\right)_{1}}{h}
\end{gathered}
$$

- Harmonic order h takes on only odd values
- Square-wave switching is a special case of the sinusoidal PWM switching when m_{a} becomes so large that the control voltage waveform intersects with the triangular waveform only at the zero crossing of $v_{\text {control }}$
- Output voltage is independent of m_{a} in the square-wave region

Square Wave Switching Scheme

Square Wave Switching Scheme

Advantage

- Each inverter switch changes its state only twice per cycle, which is important at very high power levels where the solid-state switches generally have slower turn-on and turn-off speeds

Disadvantage

- Inverter is not capable of regulating the output voltage magnitude. Therefore, the DC input voltage $\left(V_{d}\right)$, to the inverter must be adjusted in order to control the magnitude of the inverter output voltage

1-phase Half-bridge Inverter

1-phase Half-bridge Inverter

- Circuit configuration is identical to the basic one-leg inverter
- $v_{o}=V_{A 0}$
- Regardless of the switch states, the current between the two capacitors C_{+}and C_{-}divides equally
- When T_{+}is ON , either T_{+}or D_{+}conducts depending on the direction of i_{0}
- When the switch T_{-}is ON , either T_{-}or D_{-}conducts depending on the direction of i_{0}
- In half-bridge inverter, the peak voltage rating of switch

$$
V_{T}=V_{d}
$$

- In half-bridge inverter, the peak current rating of switch

$$
I_{r}=i_{o, \text { peak }}
$$

2. 1-phase Full-bridge Inverter

2. 1-phase Full-bridge Inverter

- 1-phase Full-bridge inverter consists of two one-leg inverters
- Higher power ratings
- With the same dc input voltage, the maximum output voltage of the full-bridge inverter is twice that of the half-bridge inverter
- Output current and the switch currents of full bridge inverter are onehalf of those for a half-bridge inverter
2.1 PWM with Bipolar Voltage Switching

2.1 PWM with Bipolar Voltage Switching

- Switch pairs: $\left(T_{A+}, T_{B-}\right)$ and $\left(T_{A-}, T_{B+}\right)$
- Output of inverter leg B is negative of the leg A output
- When T_{A+} is ON, $V_{A o}=\frac{V_{d}}{2}$
- When T_{B-} is ON, $V_{B o}=\frac{-V_{d}}{2}$

$$
\begin{gathered}
v_{B o}(t)=-v_{A o}(t) \\
v_{o}(t)=v_{A o}(t)-v_{B o}(t)=2 v_{A o}(t)
\end{gathered}
$$

- Peak of the fundamental-frequency component in the output voltage (\hat{V}_{01})

$$
\begin{gathered}
\hat{V}_{o 1}=m_{a} V_{d} \quad\left(m_{a} \leq 1.0\right) \\
V_{d}<\hat{V}_{o 1}<\frac{4}{\pi} V_{d} \quad\left(m_{a}>1.0\right)
\end{gathered}
$$

- v_{o} switches between $-V_{d}$ and $+V_{d}$ voltage levels \Longrightarrow PWM with Bipolar Voltage Switching

Problem

Q) In the full-bridge converter circuit, $V_{d}=300 \mathrm{~V}, m_{a}=0.8, m_{f}=39$ and the fundamental frequency is 47 Hz . Calculate the rms values of the fundamental-frequency voltage and some of the dominant harmonics in the output voltage v_{o} if a PWM bipolar voltage-switching scheme is used.

$$
\begin{aligned}
\left(V_{o}\right)_{h} & =\frac{1}{\sqrt{2}} \cdot 2 \cdot \frac{V_{d}}{2} \frac{\left(\hat{V}_{A o}\right)_{h}}{V_{d} / 2}=\frac{V_{d}}{\sqrt{2}} \frac{\left(\hat{V}_{A o}\right)_{h}}{V_{d} / 2} \\
& =212.13 \frac{\left(\hat{V}_{A o}\right)_{h}}{V_{d} / 2} \\
V_{o 1} & =212.13 \times 0.8=169.7 \mathrm{~V} \text { at } 47 \mathrm{~Hz} \\
\left(V_{o}\right)_{37} & =212.13 \times 0.22=46.67 \mathrm{~V} \text { at } 1739 \mathrm{~Hz} \\
\left(V_{o}\right)_{39} & =212.13 \times 0.818=173.52 \mathrm{~V} \text { at } 1833 \mathrm{~Hz} \\
\left(V_{o}\right)_{41} & =212.13 \times 0.22=46.67 \mathrm{~V} \text { at } 1927 \mathrm{~Hz} \\
\left(V_{o}\right)_{77} & =212.13 \times 0.314=66.60 \mathrm{~V} \text { at } 3619 \mathrm{~Hz} \\
\left(V_{o}\right)_{79} & =212.13 \times 0.314=66.60 \mathrm{~V} \text { at } 3713 \mathrm{~Hz}
\end{aligned}
$$

2.1 PWM with Bipolar Voltage Switching

DC Side Current (i_{d})

- Switching frequency is assumed to be very high, approaching infinity \Longrightarrow To filter out the high-switching-frequency components in v_{o} and i_{d}, the filter components L and C required in both $A C$ and $D C$ side filters approach zero. ie, the energy stored in the filters is negligible. Since the converter itself has no energy storage elements, the instantaneous power input must equal the instantaneous power output

2.1 PWM with Bipolar Voltage Switching

- Sine wave at the fundamental output frequency ω_{1}

$$
v_{o 1}=v_{o}=\sqrt{2} V_{o} \sin \omega_{1} t
$$

- Output current (i_{o})

$$
i_{o}=\sqrt{2} I_{o} \sin \left(\omega_{1} t-\phi\right)
$$

- Assuming that no energy is stored in the filters

$$
\begin{aligned}
& V_{d} i_{d}^{*}(t)=V_{o}(t) i_{o}(t)=\sqrt{2} V_{o} \sin \omega_{1} t \sqrt{2} I_{o} \sin \left(\omega_{1} t-\phi\right) \\
& \begin{aligned}
i_{d}^{*}(t) & =\frac{V_{o} I_{o}}{V_{d}} \cos \phi-\frac{V_{o} I_{o}}{V_{d}} \cos \left(2 \omega_{1} t-\phi\right)=I_{d}+i_{d 2} \\
& =I_{d}-\sqrt{2} I_{d 2} \cos \left(2 \omega_{1} t-\phi\right) \\
I_{d} & =\frac{V_{o} I_{o}}{V_{d}} \cos \phi \quad I_{d 2}=\frac{1}{\sqrt{2}} \frac{V_{o} I_{o}}{V_{d}}
\end{aligned}
\end{aligned}
$$

2.1 PWM with Bipolar Voltage Switching

- i_{d}^{*} consists of
(1) $I_{d}: \mathrm{DC}$ component \rightarrow responsible for the power transfer from V_{d} on the $D C$ side of the inverter to the $A C$ side
(2) Sinusoidal component at twice the fundamental frequency due to inverter switchings

2.1 PWM with Bipolar Voltage Switching

2.2 PWM with Unipolar Voltage Switching

- Unipolar voltage switching
- Legs A and B of the full-bridge inverter are controlled separately by comparing $V_{\text {tri }}$ with $v_{\text {control }}$ and $-v_{\text {control }}$ respectively
- Leg A

$$
\begin{array}{lll}
v_{\text {control }}>v_{\mathrm{tri}}: & T_{A+} \text { on and } & v_{A N}=v_{d} \\
v_{\text {control }}<v_{\mathrm{tri}}: & T_{A-} \text { on and } v_{A N}=0
\end{array}
$$

- Leg B

$$
\begin{array}{lll}
\left(-v_{\text {control }}\right)>v_{t r}: & T_{B+} \text { on and } & v_{B N}=V_{d} \\
\left(-v_{\text {contool }}\right)<v_{t r i}: & T_{B-} \text { on and } & v_{B N}=0
\end{array}
$$

2.2 PWM with Unipolar Voltage Switching

2.2 PWM with Unipolar Voltage Switching

2.2 PWM with Unipolar Voltage Switching

$$
\begin{aligned}
& \text { 1. } T_{A+}, T_{B-} \text { on: } v_{A N}=V_{d}, \quad v_{B N}=0 ; \quad v_{o}=V_{d} \\
& \text { 2. } T_{A-}, T_{B+} \text { on: } v_{A N}=0, \quad v_{B N}=V_{d ;} ; \quad v_{o}=-V_{d} \\
& \text { 3. } T_{A+}, T_{B+} \text { on: } v_{A N}=V_{d}, \quad v_{B N}=V_{d ;} ; \quad v_{o}=0 \\
& \text { 4. } T_{A-}, T_{B-} \text { on: } v_{A N}=0, \quad v_{B N}=0 ; \quad v_{o}=0
\end{aligned}
$$

- When both the upper switches are ON
- Output voltage is zero
- i_{0} circulates in a loop through (T_{A+} and D_{B+}) or (D_{A+} and T_{B+}) depending on the direction of i_{0}
- Input current i_{d} is zero
- In unipolar PWM scheme, v_{o} changes between zero and $+V_{d}$ or between zero and $-V_{d}$ voltage levels
- It has the advantage of effectively doubling the switching frequency as far as the output harmonics are concerned, compared to the bipolar voltage-switching scheme
- Also the voltage jumps in the output voltage at each switching are reduced to V_{d}

2.2 PWM with Unipolar Voltage Switching

Harmonic Analysis

2.2 PWM with Unipolar Voltage Switching

Harmonic Analysis

- Effectively doubling the switching frequency appears in the harmonic spectrum of the output voltage waveform
- Lowest harmonics appear as side-bands of twice the switching frequency
- Lets consider modulation ratio m_{f} to be even
- $v_{A N}$ and $v_{B N}$ are displaced by 180° of the fundamental frequency f , with respect to each other
- Harmonic components at the switching frequency in $v_{A N}$ and $v_{B N}$ have the same phase \rightarrow Cancellation of the harmonic component at the switching frequency in v_{o}
- Side-bands of the switching-frequency harmonics disappear
- Other dominant harmonic at twice the switching frequency cancels out, while its side-bands do not

$$
\begin{gathered}
\hat{V}_{o 1}=m_{a} V_{d} \quad\left(m_{a} \leq 1.0\right) \\
V_{d}<\hat{V}_{o 1}<\frac{4}{\pi} V_{d} \quad\left(m_{a}>1.0\right)
\end{gathered}
$$

Problem

Q) Consider a PWM with unipolar voltage switching scheme with $m_{f}=$ 38. Calculate the rms values of the fundamental frequency voltage and some of the dominant harmonics in the output voltage. $\mathrm{f}=47 \mathrm{~Hz}$

$$
h=j\left(2 m_{f}\right) \pm k
$$

$$
\left(V_{o}\right)_{h}=212.13 \frac{\left(V_{A o}\right)_{h}}{V_{d} / 2}
$$

$$
\begin{aligned}
& \text { At fundamental or } 47 \mathrm{~Hz}: \quad V_{o 1}=0.8 \times 212.13=169.7 \mathrm{~V} \\
& \text { At } h=2 m_{f}-1=75 \text { or } 3525 \mathrm{~Hz}: \\
& \text { At } h=2 m_{f}+1=77 \text { or } 3619 \mathrm{~Hz}:\left(V_{o}\right)_{75}=0.314 \times 212.13=66.60 \mathrm{~V} \\
& \hline
\end{aligned}
$$

Square Wave Operation

- Full-bridge inverter with square wave mode of operation
- Switches $\left(T_{A+}, T_{B-}\right)$ and $\left(T_{B+}, T_{A-}\right)$ are operated as two pairs with a duty ratio of 0.5
- Output voltage magnitude given below is regulated by controlling the input dc voltage

$$
\hat{V}_{o 1}=\frac{4}{\pi} V_{d}
$$

2.3 Output Control by Voltage Cancellation

2.3 Output Control by Voltage Cancellation

2.3 Output Control by Voltage Cancellation

2.3 Output Control by Voltage Cancellation

- Feasible only in a single-phase full-bridge inverter
- Based on the combination of square-wave switching and PWM with a unipolar voltage switching
- Switches in the two inverter legs are controlled separately (similar to PWM unipolar voltage switching)
- Also all switches have a duty ratio of 0.5 similar to a square-wave control
- Waveforms for $v_{A N}$ and $v_{B N}$
- Waveform overlap angle α can be controlled

2.3 Output Control by Voltage Cancellation

- During overlap interval, the output voltage is zero
- With $\alpha=0$, the output waveform is similar to a square-wave inverter with the maximum possible fundamental output magnitude
- $\beta-90^{\circ}-\frac{1}{2} \alpha$

$$
\begin{aligned}
\left(\hat{V}_{o}\right)_{h} & =\frac{2}{\pi} \int_{-\pi / 2}^{\pi / 2} v_{0} \cos (h \theta) d \theta \\
& =\frac{2}{\pi} \int_{-\beta}^{\beta} V_{d} \cos (h \theta) d \theta \\
\left(\hat{V}_{o}\right)_{h} & =\frac{4}{\pi h} V_{d} \sin (h \beta)
\end{aligned}
$$

2.4 Switch Utilization in Full Bridge Inverters

- Independent of the type of control and the switching scheme used, the peak switch voltage and current ratings required in a full-bridge inverter are

$$
\begin{aligned}
V_{T} & =V_{d} \\
I_{T} & =i_{o, p e a k}
\end{aligned}
$$

Assumptions:

- $V_{d, \max }=$ Highest value of the input voltage
- PWM mode : Input remains constant at $V_{d, \max }$
- Square-wave mode : Input voltage is decreased below $V_{d, \max }$ to decrease the output voltage from its maximum value
- $I_{0, \max }=$ RMS value of maximum load current
- High inductance associated with the output load yields a purely sinusoidal current

2.4 Switch Utilization in Full Bridge Inverters

- Inverter rms volt-ampere (VA) output at fundamental frequency at the maximum rated output $=V_{o 1} l_{o, \max }$
- $q=$ Number of switches in inverter
- $V_{T}=$ Peak voltage rating of a switch
- $I_{T}=$ Peak current rating of a switch

$$
\text { Switch utilization ratio }=\frac{V_{o 1} I_{o, \text { max }}}{q V_{T} I_{T}}
$$

- Consider Full bridge inverter with square wave mode of operation at maximum rated output power

$$
V_{T}=V_{d, \max } \quad I_{T}=\sqrt{2} I_{o, \max }=\frac{4}{\pi \sqrt{2}} V_{d, \max } \quad q=4
$$

$$
\text { Maximum switch utilization ratio }=\frac{1}{2 \pi} \approx 0.16
$$

2.4 Switch Utilization in Full Bridge Inverters

In practice, switch utilization ratio will be much smaller than 0.16 since
(1) Switch ratings are chosen conservatively to provide safety margins
(2) In determining the switch rating in a PWM inverter, the variations in the input DC voltage must be considered
(3) Ripple in the output current would influence the switch current rating

- At lower output volt-amperes compared to the maximum rated output, switch utilization decreases linearly
- For PWM switching with $m_{a} \leq 1$, switch utilization ratio would be smaller by a factor of $(\pi / 4) m_{a}$ as compared to square wave mode of operation

$$
\text { Maximum switch utilization ratio }=\frac{1}{2 \pi} \frac{\pi}{4} m_{a}=\frac{1}{8} m_{a} \quad\left(\mathrm{PWM}, m_{a} \leq 1.0\right)
$$

- Theoretical maximum switch utilization ratio in a PWM switching is only 0.125 at $m_{a}=1$, as compared with 0.16 in a square wave inverter

Problem

Q) In a single phase full bridge PWM inverter, V_{d} varies in a range of 295-325 V. The output voltage is requires to be constant at $200 \mathrm{~V}(\mathrm{rms})$ and the maximum load current (assumed to be sinusoidal) is 10 A (rms). Calculate the combined switch utilization ratio under idealized conditions.

$$
\begin{aligned}
V_{T} & =V_{d, \max }=325 \mathrm{~V} \\
I_{T} & =\sqrt{2} I_{o}=\sqrt{2} \times 10=14.14 \\
q & =\text { no. of switches }=4
\end{aligned}
$$

$$
V_{o 1} I_{o, \max }=200 \times 10=2000 \mathrm{VA}
$$

Switch utilization ratio $=\frac{V_{o 1} I_{o, \text { max }}}{q \dot{V}_{T} I_{T}}=\frac{2000}{4 \times 325 \times 14.14} \approx 0.11$

3. 3-phase Voltage Source Inverter

3. 3-phase Voltage Source Inverter

- Three phase inverter consists of three legs \rightarrow one for each phase
- Each inverter leg is similar to basic one leg inverter
- Output of each leg depends only on V_{d} and switch status
- Output voltage is independent of the output load current since one of the two switches in a leg is always on at any instant

3.1 3-phase Sine PWM Inverter

3.1 3-phase Sine PWM Inverter

3.1 3-phase Sine PWM Inverter

3.1 3-phase Sine PWM Inverter

- Pulse-width-modulated three-phase inverter \rightarrow To shape and control the three-phase output voltages in magnitude and frequency with an essentially constant input voltage V_{d}
- Same triangular voltage waveform is compared with three sinusoidal control voltages that are 120° out of phase
- An identical amount of average DC component is present in the output voltages $v_{A N}, v_{B N} \& v_{C N}$ and are cancelled out in the line-to-line voltages
- The harmonics in the output of any one of the legs (eg. $v_{A N}$) are identical to the harmonics in $v_{A o}$
- Only odd harmonics exist as side bands, centred around m_{f} and its multiples, provided m_{f} is odd

3.1 3-phase Sine PWM Inverter

- Only considering the harmonic at m_{f}, the phase difference between the m_{f} harmonic in $v_{A N}$ and $v_{B N}$ is $\left(120 m_{f}\right)^{\circ}$. This phase difference will be equivalent to zero (a multiple of 360°) if m_{f} is odd and a multiple of $3 \Longrightarrow$ Harmonic at m_{f} is suppressed in the line-to-line voltage $v_{A B}$
- Reason for choosing m_{f} to be an odd multiple of 3 is to keep m_{f} odd and hence eliminate even harmonics

3.1 3-phase Sine PWM Inverter

PWM Scheme

- For law values of m_{f}, to eliminate the even harmonics, a synchronized PWM should be used and m_{f} should be an odd integer. Moreover, m_{f} should be a multiple of 3 to cancel out the most dominant harmonics in the line-to-line voltage
- For large values of m_{f}, The amplitudes of sub-harmonics due to asynchronous PWM are small at large values of m_{f}. Hence asynchronous PWM can be used where the frequency of the triangular waveform is kept constant, whereas the frequency of $v_{\text {control }}$ varies, resulting in non-integer values of m_{f}
- During over-modulation $\left(m_{a}>1\right)$, regardless of the value of m_{f}, synchronized PWM must be used

3.1 3-phase Sine PWM Inverter

Linear Modulation ($m_{a} \leq 1.0$)

- In the linear region, the fundamental-frequency component in the output voltage varies linearly with the amplitude modulation ratio m_{a}
- Peak value of the fundamental-frequency component in one of the inverter legs,

$$
\left(\hat{V}_{A N}\right)_{1}=m_{a} \frac{V_{d}}{2}
$$

- Line-to-line rms voltage at the fundamental frequency, due to 120° phase displacement between phase voltages,

$$
\begin{aligned}
\begin{array}{c}
V_{L L_{1}} \\
\text { (line-line, } \mathrm{mms} \text {) }
\end{array} & =\frac{\sqrt{3}}{\sqrt{2}}\left(\hat{V}_{A N}\right)_{\mathbf{1}} \\
& =\frac{\sqrt{3}}{2 \sqrt{2}} m_{a} V_{d} \\
& \simeq 0.612 m_{a} V_{d}
\end{aligned}
$$

3.1 3-phase Sine PWM Inverter

- RMS harmonic voltages of Line to Line output voltages,

l	0.2	0.4	0.6	0.8	1.0
$m_{f} \pm 2$	0.122	0.245	0.367	0.490	0.612
$m_{f} \pm 4$	0.010	0.037	0.080	0.135	0.195
$2 m_{f} \pm 1$	0.116	0.200	0.227	0.192	0.011
$2 m_{f} \pm 5$				0.008	0.020
$3 m_{f} \pm 2$	0.027	0.085	0.124	0.108	0.038
$3 m_{f} \pm 4$		0.007	0.029	0.064	0.096
$4 m_{f} \pm 1$	0.100	0.096	0.005	0.064	0.042
$4 m_{f} \pm 5$			0.021	0.051	0.073
$4 m_{f} \pm 7$				0.010	0.030

3.1 3-phase Sine PWM Inverter

Over-modulation ($m_{a}>1.0$)

- Fundamental frequency voltage magnitude does not increase proportionally with m_{a}
- For sufficiently large values of m_{a}, the PWM degenerates into a squarewave inverter waveform \Longrightarrow Maximum value of $V_{L L 1}=0.78 V_{d}$
- In the over-modulation region, more side-band harmonics appear centred around the frequencies of harmonics m_{f} and its multiples
- Dominant harmonics may not have as large an amplitude as with $m_{a} \leq$ $1 \rightarrow$ Power loss in the load due to the harmonic frequencies may not be as high in the over-modulation region

3.1 3-phase Sine PWM Inverter

Over-modulation ($m_{a}>1.0$)

3.2 Square Wave Operation

3.2 Square Wave Operation

3.2 Square Wave Operation

3.2 Square Wave Operation

- If the input DC voltage V_{d} is controllable, the inverter can be operated in a square-wave mode
- For sufficiently large values of m_{a}, PWM degenerates into square-wave operation
- Each switch is ON for 180° (ie, $\mathrm{D}=0.5$)
- At any instant of time, three switches are ON
- DC input voltage must be controlled in order to control the output voltage magnitude
- Fundamental frequency line-to-line rms output voltage

$$
\begin{aligned}
&{\underset{(\mathrm{rms})}{V_{L L_{1}}}}=\frac{\sqrt{3}}{\sqrt{2}} \frac{4}{\pi} \frac{V_{d}}{2} \\
&=\frac{\sqrt{6}}{\pi} V_{d} \\
& \simeq 0.78 V_{d}
\end{aligned}
$$

3.2 Square Wave Operation

- Line-to-line output voltage waveform does not depend on the load
- Line-to-line output voltage contains harmonics ($6 n \pm 1 ; n=1,2, .$.), whose amplitudes decrease inversely proportional to their harmonic order

$$
\begin{gathered}
V_{L_{h}}=\frac{0.78}{h} V_{d} \\
h=6 n \pm 1 \quad(n=1,2,3, \ldots)
\end{gathered}
$$

- It is not possible to control the output voltage magnitude in a threephase square-wave inverter by means of voltage cancellation technique

3.3 Switch Utilization in 3-phase Inverter

- $V_{d, \max }=$ Highest value of the input voltage
- PWM mode : Input remains constant at $V_{d, \max }$
- Square-wave mode : Input voltage is decreased below $V_{d, \max }$ to decrease the output voltage from its maximum value
- $I_{0, \max }=$ RMS value of maximum load current
- High inductance associated with the output load yields a purely sinusoidal current
- Peak voltage and current ratings of switch

$$
\begin{gathered}
V_{T}=V_{d, \max } \\
I_{T}=\sqrt{2} I_{o, \text { max }}
\end{gathered}
$$

- $V_{L L 1}=$ RMS value of the fundamental frequency line-to-line output voltage
- Three-phase output volt-amperes (rms) at the fundamental frequency at the rated output,

$$
(V A)_{3 \text {-phase }}=\sqrt{3} V_{L L_{1}} I_{o, \max }
$$

3.3 Switch Utilization in 3-phase Inverter

- Total switch utilization ratio of all six switches combined,

Switch utilization \quad ratio $=\frac{(V A)_{3-\text { phase }}}{6 V_{T} I_{T}}$

$$
\begin{aligned}
& =\frac{\sqrt{3} V_{L_{1}} I_{o, \text { max }}}{6 V_{d, \text { max }} \sqrt{2} I_{o, \text { max }}} \\
& =\frac{1}{2 \sqrt{6}} \frac{V_{L_{L_{1}}}}{V_{d, \text { max }}}
\end{aligned}
$$

3.3 Switch Utilization in 3-phase Inverter

- In PWM linear region ($m_{a} \leq 1$), maximum switch utilization occurs at $V_{d}=V_{d, \max }$

$$
\begin{aligned}
\text { Maximum switch utilization ratio } & =\frac{1}{2 \sqrt{6}} \frac{\sqrt{3}}{2 \sqrt{2}} m_{a} \\
& =\frac{1}{8} m_{a} \quad\left(m_{a} \leq 1.0\right)
\end{aligned}
$$

- In the square-wave mode, maximum switch utilization ratio is $(1 / 2 \pi)$ $=0.16$ compared to a maximum of 0.125 for a PWM linear region with $m_{a}=1.0$
- The maximum switch utilization ratio is the same in a three-phase, three-leg inverter as in a single-phase inverter
- Using the switches with identical ratings, a three-phase inverter with 50% increase in the number of switches results in a 50% increase in the output volt-ampere, compared to a single-phase inverter
(1) Mohan, Undeland, Robbins, "Power Electronics Converters Application and Design", Wiley-India
(2) Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Pearson Education
(3) Abraham Pressman, "Switching Power supply Design", McGraw Hill

Thank You

*for private circulation only

Switched Mode Power Converters

 (EE364)
S6-EEE

by

Prof. Dinto Mathew

Asst. Professor
Dept. of EEE, MACE

Module 5 - Overview

(1) Voltage Control of Three-phase Inverters
(2) Sinusoidal PWM
(3) Space Vector Modulation

- Concept of Space Vector
- Modulating Reference Vector
- Switching Times
- Space Vector Sequence
(4) Comparison of Sine PWM \& Space Vector PWM
(5) Programmed (Selective) Harmonic Elimination Switching
(6) Current Controlled Voltage Source Inverter
- Tolerance Band Control
- Fixed-Frequency Control

1. Voltage Control of Three-phase Inverters

- Voltage Control Techniques
- Sinusoidal PWM
- Commonly used
- Peak amplitude of the output voltage cannot exceed the DC supply voltage $\left(V_{S}\right)$ without operation in the over-modulation region
- Third-harmonic PWM
- Gives limited AC output voltage control
- $60^{\circ} \mathrm{PWM}$
- Gives the fundamental component, which is higher than the available supply (V_{S})
- Space Vector Modulation
- More flexible
- It can be programmed to synthesize the output voltage with a digital implementation

2. Sinusoidal PWM

2. Sinusoidal PWM

2. Sinusoidal PWM

2. Sinusoidal PWM

- Gating signals are generated with sinusoidal PWM
- Three sinusoidal reference waves ($v_{r a}, v_{r b}, v_{r c}$) each shifted by 120°
- Carrier wave $\left(v_{c r}\right)$ is compared with each reference signal to generate the gating signals (g_{1}, g_{3}, g_{5} etc.) for that phase
- When $v_{r a}>v_{c r}$, the upper switch Q_{1} in inverter leg a is turned ON
- Lower switch Q_{4} is complementary to $Q_{1} \Longrightarrow$ Two switching devices in the same arm cannot conduct at the same time
- $v_{a n}=V_{S} * g_{1}$
- $v_{b n}=V_{S} * g_{3}$
- Instantaneous line-to-line output voltage, $v_{a b}=V_{s}\left(g_{1}-g_{3}\right)$
- Fundamental component of the lineline voltage $v_{a b}=v_{a b 1}$

2. Sinusoidal PWM

- Normalized carrier frequency m_{f} should be an odd multiple of three
- \Longrightarrow All phase voltages ($v_{a N}, v_{b N}, v_{c N}$) are identical, but 120° out of phase without even harmonics
- Harmonics at frequencies of multiples of three are identical in amplitude and phase in all phases

$$
\begin{aligned}
& v_{a N 9}(t)=\hat{v}_{9} \sin (9 \omega t) \\
& v_{b N 9}(t)=\hat{v}_{9} \sin \left(9\left(\omega t-120^{\circ}\right)\right) \\
& \left.=\hat{v}_{9} \sin \left(9 \omega t-1080^{\circ}\right)\right) \\
& = \\
& =\hat{v}_{9} \sin (9 \omega t)
\end{aligned}
$$

- $\therefore A C$ output line voltage $v_{a b}=v_{a N}-v_{b N}$ does not contain the ninth harmonic
- For odd multiples of three times the normalized carrier frequency m_{f}, the harmonics in the AC output voltage appear at normalized frequencies f_{h} centred around m_{f} and its multiples, specifically, at $n=j m_{f} \pm k$ where j $=1,3,5 \ldots \ldots$ for $k=2,4,6 \ldots \ldots$ and $j=2,4,6 \ldots \ldots \ldots$ for $k=1,3,5 \ldots$. such that n is not a multiple of three

2. Sinusoidal PWM

- Hence harmonics are at $m_{f} \pm 2, m_{f} \pm 4 \ldots \ldots, 2 m_{f} \pm 1,2 m_{f} \pm 5, \ldots \ldots \ldots$, $3 m_{f} \pm 2,3 m_{f} \pm 4, \ldots \ldots \ldots, 4 m_{f} \pm 1,4 m_{f} \pm 5, \ldots \ldots$.
- For nearly sinusoidal AC load current, the harmonics in the DC-link current are at frequencies $n=j m_{f} \pm k \pm 1$ where $\mathrm{j}=0,2,4 \ldots$ for $\mathrm{k}=$ $1,5,7 \ldots$. and $j=1,3,5 \ldots \ldots$ for $k=2,4,6 \ldots$. such that $n=j m_{f} \pm k$ is positive and not a multiple of three
- Maximum amplitude of the fundamental phase voltage in the linear region $(M \leq 1)$ is $V_{s} / 2$
- Maximum amplitude of the fundamental ac output line voltage,

$$
V_{a b 1}=\sqrt{3} V_{s} / 2
$$

- Therefore peak amplitude

$$
\hat{v}_{a b 1}=M \sqrt{3} \frac{V_{s}}{2} \quad \text { for } 0<M \leq 1
$$

2. Sinusoidal PWM

Over-modulation

- To further increase the amplitude of the load voltage, the amplitude of the modulating signal \hat{v}_{r} can be made higher than the amplitude of the carrier signal $\hat{v_{c r}}$
- Relationship between the amplitude of the fundamental AC output line voltage and the DC-link voltage becomes non-linear

$$
\sqrt{3} \frac{V_{s}}{2}<\hat{v}_{a b 1}=\hat{v}_{b c 1}=\hat{v}_{c a 1}<\frac{4}{\pi} \sqrt{3} \frac{V_{s}}{2}
$$

Square-wave Operation

- Large values of M in the SPWM technique lead to full over-modulation \Longrightarrow Square-wave operation
- Power devices are ON for 180°
- Inverter cannot vary the load voltage except by varying the DC supply voltage V_{s}
- Fundamental AC line voltage

$$
\hat{v}_{a b 1}=\frac{4}{\pi} \sqrt{3} \frac{V_{s}}{2}
$$

- AC line output voltage contains the harmonics f_{n}, where $n=6 k \pm 1$ ($k=1,2,3 \ldots$) and their amplitudes are inversely proportional to their harmonic order n

$$
\hat{\boldsymbol{v}}_{a b n}=\frac{1}{n} \frac{4}{\pi} \sqrt{3} \frac{V_{s}}{2}
$$

Square-wave Operation

Problem

Q) A single-phase full-bridge inverter controls the power in a resistive load. The nominal value of input DC voltage is $V_{s}=220 \mathrm{~V}$ and a uniform pulse-width modulation with five pulses per half cycle is used. For the required control, the width of each pulse is 30°.
(a) Determine the rms voltage of the load.
(b) If the DC supply increases by 10%, determine the pulse width to maintain the same load power. If the maximum possible pulse width is 35°, determine the minimum allowable limit of the DC input source

Problem

Q) A single-phase full-bridge inverter controls the power in a resistive load. The nominal value of input DC voltage is $V_{s}=220 \mathrm{~V}$ and a uniform pulse-width modulation with five pulses per half cycle is used. For the required control, the width of each pulse is 30°.
(a) Determine the rms voltage of the load.
(b) If the DC supply increases by 10%, determine the pulse width to maintain the same load power. If the maximum possible pulse width is 35°, determine the minimum allowable limit of the DC input source
a. $V_{s}=220 \mathrm{~V}, p=5$, and $\delta=30^{\circ}$. From Eq. (6.31), $V_{o}=220 \sqrt{5 \times 30 / 180}=200.8 \mathrm{~V}$.
b. $V_{s}=1.1 \times 220=242 \mathrm{~V}$. By using Eq. (6.31), $242 \sqrt{58 / 180}=200.8$ and this gives the required value of pulse width, $\delta=24.75^{\circ}$.

To maintain the output voltage of 200.8 V at the maximum possible pulse width of $\delta=35^{\circ}$, the input voltage can be found from $200.8=V_{s} \sqrt{5 \times 35 / 180}$, and this yields the minimum allowable input voltage, $V_{s}=203.64 \mathrm{~V}$.

3. Space Vector Modulation (SVM)

3. Space Vector Modulation (SVM)

Switch States for Three-Phase Voltage-Source Inverter

State	State No.	Switch States	$v_{a b}$	$v_{b c}$	$v_{c a}$	Space Vector
S_{1}, S_{2}, and S_{6} are on and S_{4}, S_{5}, and S_{3} are off	1	100	V_{S}	0	$-V_{S}$	$\mathbf{V}_{\mathbf{1}}=1+j 0.577=2 / \sqrt{ } 3 \angle 30^{\circ}$
S_{2}, S_{3}, and S_{1} are on and S_{5}, S_{6}, and S_{4} are off	2	110	0	V_{S}	$-V_{S}$	$\mathbf{V}_{\mathbf{2}}=j 1.155=2 / \sqrt{ } 3<90^{\circ}$
S_{3}, S_{4}, and S_{2} are on and $S_{6} . S_{1}$, and S_{5} are off	3	010	$-V_{S}$	V_{S}	0	$\mathbf{V}_{\mathbf{3}}=-1+j 0.577=2 / \sqrt{3} \angle 150^{\circ}$
S_{4}, S_{5}, and S_{3} are on and S_{1}, S_{2}, and S_{6} are off	4	011	$-V_{S}$	0	V_{S}	$\mathbf{V}_{\mathbf{4}}=-1-j 0.577=2 / \sqrt{3} \angle 210^{\circ}$
S_{5}, S_{6}, and S_{4} are on and S_{2}, S_{3}, and S_{1} are off	5	001	0	$-V_{S}$	V_{S}	$\mathbf{V}_{5}=-j 1.155=2 / \sqrt{ } 3 \angle 270^{\circ}$
S_{6}, S_{1}, and S_{5} are on and S_{3}, S_{4}, and S_{2} are off	6	101	V_{S}	$-V_{S}$	0	$\mathbf{V}_{6}=1-j 0.577=2 / \sqrt{ } 3 \angle 330^{\circ}$
S_{1}, S_{3}, and S_{5} are on and S_{4}, S_{6}, and S_{2} are off	7	111	0	0	0	$\mathbf{V}_{7}=0$
S_{4}, S_{6}, and S_{2} are on and S_{1}, S_{3}, and S_{5} are off	8	000	0	0	0	$\mathbf{V}_{0}=0$

3. Space Vector Modulation (SVM)

- SVM treats the inverter as a single unit
- Inverter can be driven to eight unique states
- Modulation is accomplished by switching the state of the inverter
- Control strategies are implemented in digital systems
- SVM is a digital modulating technique where the objective is to generate PWM load line voltages that are in average equal to a given (or reference) load line voltage. This is done in each sampling period by properly selecting the switch states of the inverter and the calculation of the appropriate time period for each state. The selection of the states and their time periods are accomplished by the space vector (SV) transformation

Space Transformation

- Any three functions of time that satisfy $u_{a}(t)+u_{b}(t)+u_{c}(t)=0$ can be represented in a two-dimensional stationary space
- $u_{c}(t)=-u_{a}(t)-u_{b}(t)$
- abc/xy transformation \rightarrow Transformation of three-phase variables to two-phase variables
- A rotating space vector(s) $u(t)$ in complex notation,

$$
\mathbf{u}(t)=\frac{2}{3}\left[u_{a}+u_{b} e^{j(2 / 3) \pi}+u_{c} e^{-j(2 / 3) \pi}\right]
$$

- The real and imaginary components in the xy domain,

$$
\mathbf{u}(t)=u_{x}+j u_{y}
$$

3. Space Vector Modulation (SVM)

3. Space Vector Modulation (SVM)

- Coordinate transformation from the abc-axis to the xy axis

$$
\begin{aligned}
\binom{u_{x}}{u_{y}} & =\frac{2}{3}\left(\begin{array}{ccc}
1 & \frac{-1}{2} & \frac{-1}{2} \\
0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{l}
u_{a} \\
u_{b} \\
u_{c}
\end{array}\right) \\
u_{x} & =\frac{2}{3}\left[v_{a}-0.5\left(v_{b}+v_{c}\right)\right] \\
u_{y} & =\frac{\sqrt{3}}{3}\left(v_{b}-v_{c}\right)
\end{aligned}
$$

3. Space Vector Modulation (SVM)

- The transformation from the $x y$ axis to the $\alpha-\beta$ axis, which is rotating with an angular velocity of ω, can be obtained by rotating the xy-axis with ωt as given by

$$
\begin{aligned}
\binom{u_{\alpha}}{u_{\beta}} & =\left(\begin{array}{cc}
\cos (\omega t) & \cos \left(\frac{\pi}{2}+\omega t\right) \\
\sin (\omega t) & \sin \left(\frac{\pi}{2}+\omega t\right)
\end{array}\right)\binom{u_{x}}{u_{y}} \\
& =\left(\begin{array}{cc}
\cos (\omega t) & -\sin (\omega t) \\
\sin (\omega t) & \cos (\omega t)
\end{array}\right)\binom{u_{x}}{u_{y}}
\end{aligned}
$$

- Inverse transformation

$$
\begin{aligned}
u_{a} & =\operatorname{Re}(\mathbf{u}) \\
u_{b} & =\operatorname{Re}\left(\mathbf{u} e^{-j(2 / 3) \pi}\right) \\
u_{c} & =\operatorname{Re}\left(\mathbf{u} e^{j(2 / 3) \pi}\right)
\end{aligned}
$$

3. Space Vector Modulation (SVM)

- If u_{a}, u_{b} and u_{c} are the three-phase voltages of a balanced supply with a peak value of V_{m}, then

$$
\begin{aligned}
& u_{a}=V_{m} \cos (\omega t) \\
& u_{b}=V_{m} \cos (\omega t-2 \pi / 3) \\
& u_{c}=V_{m} \cos (\omega t+2 \pi / 3)
\end{aligned}
$$

- Space Vector representation

$$
\mathbf{u}(t)=V_{m} e^{j \theta}=V_{m} e^{j \omega t}
$$

- Space vector is a vector of magnitude V_{m} rotating at a constant speed ω in radians per second

3.1 Concept of Space Vector

- Switching states of the inverter can be represented by binary values $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}$ and q_{6}
- $q_{k}=1$ when a switch is turned ON
- $q_{k}=0$ when a switch is turned OFF
- Pairs $\left(q_{1} q_{4}\right),\left(q_{3} q_{6}\right)$ and $\left(q_{5} q_{2}\right)$ are complementary
- $q_{4}=1-q_{1}$
- $q_{6}=1-q_{3}$
- $q_{2}=1-q_{5}$

3.1 Concept of Space Vector

- $e^{j \theta}=\cos \theta+\mathrm{j} \sin \theta$

$$
\text { for } \theta=0,2 \pi / 3 \text { or } 4 \pi / 3
$$

- Output phase voltage in the switching state (100)

$$
v_{a}(t)=\frac{2}{3} V_{S} ; \quad v_{b}(t)=\frac{-1}{3} V_{S} ; \quad v_{c}(t)=\frac{-1}{3} V_{S}
$$

- Space vector V_{1} corresponding to the switching state (100)

$$
\mathbf{V}_{\mathbf{1}}=\frac{2}{3} V_{S} e^{j 0}
$$

- In general

$$
\mathbf{V}_{\mathbf{n}}=\frac{2}{3} V_{S} e^{j(n-1) \frac{\pi}{3}} \quad \text { for } n=1,2, \ldots 6
$$

3.1 Concept of Space Vector

- Zero-vector has two switching states (111) and $(000) \Longrightarrow$ one redundant state
- Redundant switching state can be utilized to optimize the operation of the inverter such as minimizing the switching frequency
- Space vectors do not move in space \Longrightarrow stationary vectors
- Vector $\mathrm{u}(\mathrm{t})$ rotates at an angular velocity of $\omega=2 \pi f$ where f is the fundamental frequency of the inverter output voltage
- Three-phase to two-phase transformation

$$
\binom{V_{L \alpha}}{V_{L \beta}}=\frac{2}{3} \sqrt{\frac{3}{2}} V_{s}\left(\begin{array}{ccc}
1 & \frac{-1}{2} & \frac{-1}{2} \\
0 & \frac{\sqrt{3}}{2} & \frac{-\sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{l}
q_{1} \\
q_{3} \\
q_{5}
\end{array}\right)
$$

- Peak value of line voltage, $V_{L(\text { peak })}=2 V_{S} / \sqrt{3}$
- Peak value of phase voltage, $V_{p(\text { peak })}=V_{S} / \sqrt{3}$
- Line voltage vector $V_{a b}$ leads the phase vector by $\pi / 6$

3.1 Concept of Space Vector

- Normalized peak value of $n_{t h}$ line voltage vector,

$$
\begin{array}{r}
\mathbf{V}_{\mathbf{n}}=\frac{\sqrt{2} \times \sqrt{2}}{\sqrt{3}} e^{j(2 n-1) \pi / 6}=\frac{2}{\sqrt{3}}\left[\cos \left(\frac{(2 n-1) \pi}{6}\right)+j \sin \left(\frac{(2 n-1) \pi}{6}\right)\right] \\
\text { for } n=0,1,2,6
\end{array}
$$

- Six non-zero vectors, $\left(V_{1}\right.$ to $\left.V_{6}\right)$ and two zero vectors, $\left(V_{0}\right.$ and $\left.V_{7}\right)$
- Performance vector U as the time integral function of V_{n}

$$
\mathbf{U}=\int \mathbf{V}_{\mathbf{n}} d t+\mathbf{U}_{\mathbf{0}}
$$

where U_{0} is the initial condition

- U draws a hexagon locus that is determined by the magnitude and the time period of voltage vectors
- If output voltages are purely sinusoidal, then performance vector U,

$$
\mathbf{U}^{*}=M e^{j \theta}=M e^{j \omega t}
$$

where $\mathrm{M}=$ modulation index $0<M<1$ and
$\omega=$ output frequency in radians per second

3.1 Concept of Space Vector

3.1 Concept of Space Vector

- U^{*} draws a pure circle locus of radius $\mathrm{M}=1 \Longrightarrow$ Reference vector V_{r}
- Locus U can be controlled by selecting V_{n} and adjusting the time width of V_{n} to follow the U^{*} locus as closely as possible \Longrightarrow Quasi-circular Locus Method
- Angular displacement between reference vector V_{r} and α of the $\alpha-\beta$ frame can be obtained by

$$
\theta(t)=\int_{0}^{t} \omega(t) d t+\theta_{o}
$$

- When the reference (or modulating) vector V_{r} passes through the sectors one by one, different sets of switches will be turned ON or OFF according to the switching states
- When V_{r} rotates one revolution in space, the inverter output voltage completes one cycle over time
- Inverter output frequency corresponds to the rotating speed of V_{r} and its output voltage can be adjusted by varying the magnitude of V_{r}

3.2 Modulating Reference Vector

- Vectors of three-phase line modulating signals $\left[v_{r}\right]_{a b c}=\left[\begin{array}{lll}v_{r a} & v_{r b} & v_{r c}\end{array}\right]^{T}$ can be represented by the complex vector $U^{*}=V_{r}=\left[v_{r}\right]_{\alpha \beta}=\left[\begin{array}{ll}v_{r \alpha} & v_{r \beta}\end{array}\right]^{T}$ as given by

$$
\begin{aligned}
& v_{r \alpha}=\frac{2}{3}\left[v_{r a}-0.5\left(v_{r b}+v_{c r}\right)\right] \\
& v_{r \beta}=\frac{\sqrt{3}}{3}\left(v_{r b}-v_{r c}\right)
\end{aligned}
$$

- If the line modulating signals $\left[v_{r}\right]_{a b c}$ are three balanced sinusoidal waveforms with an amplitude of $A_{c}=1$ and an angular frequency ω, the resulting modulating signals in the $\alpha-\beta$ stationary frame $V_{c}=\left[v_{r}\right]_{\alpha \beta}$ becomes a vector of fixed amplitude $M A_{c}(=M)$ that rotates at frequency ω

3.3 Switching Times

- Reference vector V_{r} in a particular sector can be synthesized to produce a given magnitude and position from the three nearby stationary space vectors and the gating signals for the switching devices in each sector can also be generated
- Objective of the SV switching is to approximate the sinusoidal line modulating signal V_{r} with the eight space vectors $\left(V_{n}, n=0,2, \ldots, 7\right)$

3.3 Switching Times

- If the modulating signal V_{r} is laying between the arbitrary vectors V_{n} and V_{n+1}, then the two non-zero vectors (V_{n} and V_{n+1}) and one zero SV ($V_{z}=V_{0}$ or V_{7}) should be used to obtain the maximum load line voltage and to minimize the switching frequency
- A voltage vector V_{r} in section 1 can be realized by the V_{1} and V_{2} vectors and one of the two null vectors (V_{0} or V_{7})
- V_{1} state is active for time T_{1}, V_{2} is active for T_{2} and one of the null vectors (V_{0} or V_{7}) is active for T_{z}
- For a sufficiently high-switching frequency, the reference vector V_{r} can be assumed constant during one switching period
- Since the vectors V_{1} and V_{2} are constant and $V_{z}=0$, we can equate the volt-time of the reference vector to the SVs as

$$
\begin{aligned}
\mathbf{V}_{\mathbf{r}} \times T_{s} & =\mathbf{V}_{\mathbf{1}} \times T_{1}+\mathbf{V}_{\mathbf{2}} \times T_{2}+\mathbf{V}_{\mathbf{z}} \times T_{z} \\
T_{s} & =T_{1}+T_{2}+T_{z}
\end{aligned}
$$

- T_{1}, T_{2} and T_{z} are the dwell times for vectors V_{1}, V_{2} and V_{z} respectively

3.3 Switching Times

- space vectors in sector 1

$$
\mathbf{V}_{\mathbf{1}}=\frac{2}{3} V_{S} ; \quad \mathbf{V}_{\mathbf{2}}=\frac{2}{3} V_{S} e^{\pi_{\mathbf{3}}^{\pi}} ; \quad \mathbf{V}_{\mathbf{z}}=0 ; \quad \mathbf{V}_{\mathbf{r}}=V_{\mathbf{r}} e^{i \theta}
$$

where V_{r} is the magnitude of the reference vector and θ is the angle of V_{r}

- V_{r} can be generated by using two adjacent SVs with the appropriate duty cycle as shown in figure

$$
T_{s} V_{r} e^{j \theta}=T_{1} \frac{2}{3} V_{S}+T_{2} \frac{2}{3} V_{S} e^{j \frac{\pi}{3}}+T_{z} \times 0
$$

- In rectangular coordinates

$$
T_{s} V_{r}(\cos \theta+j \sin \theta)=T_{1} \frac{2}{3} V_{S}+T_{2} \frac{2}{3} V_{s}\left(\cos \frac{\pi}{3}+j \sin \frac{\pi}{3}\right)+T_{z} \times 0
$$

3.3 Switching Times

3.3 Switching Times

- Equating the real and imaginary parts on both sides

$$
\begin{gathered}
T_{s} V_{r} \cos \theta=T_{1} \frac{2}{3} V_{S}+T_{2} \frac{2}{3} V_{S} \cos \frac{\pi}{3}+T_{z} \times 0 \\
j T_{s} V_{r} \sin \theta=j T_{2} \frac{2}{3} V_{S} \sin \frac{\pi}{3}
\end{gathered}
$$

- Solving for T_{1}, T_{2} and T_{z} in sector $1(0 \leq \theta \leq \pi / 3)$

$$
\begin{aligned}
& T_{1}=\frac{\sqrt{3} T_{s} V_{r}}{V_{S}} \sin \left(\frac{\pi}{3}-\theta\right) \\
& T_{2}=\frac{\sqrt{3} T_{s} V_{r}}{V_{S}} \sin (\theta) \\
& T_{z}=T_{s}-T_{1}-T_{2}
\end{aligned}
$$

3.3 Switching Times

- If V_{r} lies in the middle of vector V_{1} and V_{2} so that $\theta=\pi / 6$, then the dwell time $T_{1}=T_{2}$
- If V_{r} is closer to V_{2}, then $T_{2}>T_{1}$
- If V_{r} is aligned in the direction of the central point, then the dwell time $T_{1}=T_{2}=T_{z}$
- For $k^{\text {th }}$ sector, $\theta \rightarrow \theta_{k}$

$$
\theta_{k}=\theta-(k-1) \frac{\pi}{3} \quad \text { for } 0 \leq \theta_{k} \leq \pi / 3
$$

Modulation Index

- Modulation Index

$$
M=\frac{\sqrt{3} V_{r}}{V_{S}}
$$

- Dwell Times

$$
\begin{aligned}
& T_{1}=T_{s} M \sin \left(\frac{\pi}{3}-\theta\right) \\
& T_{2}=T_{s} M \sin (\theta) \\
& T_{z}=T_{s}-T_{1}-T_{2}
\end{aligned}
$$

Relationship between the Dwell Times and the Space Vector Angle θ for Sector 1

Angle	$\theta=0$	$0 \leq \theta \leq \pi / 6$	$\theta=\pi / 6$	$0 \leq \theta \leq \pi / 3$	$\theta=\pi / 3$
Dwell time T_{1}	$T_{1}>0$	$T_{1}>T_{2}$	$T_{1}=T_{2}$	$T_{1}<T_{2}$	$T_{1}=0$
Dwell time T_{2}	$T_{2}=0$	$T_{2}<T_{1}$	$T_{1}=T_{2}$	$T_{2}>T_{1}$	$T_{2}>0$

Modulation Index

- Let
- $V_{a 1}=$ RMS value of the fundamental component of the inverter output phase (phase-a) voltage
- $V_{r}=$ Peak reference value

$$
\Longrightarrow
$$

$$
\begin{gathered}
V_{r}=\sqrt{2} V_{a 1} \\
M=\frac{\sqrt{3} V_{r}}{V_{S}}=\frac{\sqrt{6} V_{a 1}}{V_{S}}
\end{gathered}
$$

- \Longrightarrow RMS output voltage ($V_{a 1}$) is proportional to the modulation index (M)
- In SVM, hexagon is formed by six stationary vectors having a length of $2 V_{S} / 3$, the maximum value of the reference vector is given by

$$
V_{r(\max)}=\frac{2}{3} V_{S} \times \frac{\sqrt{3}}{2}=\frac{V_{S}}{\sqrt{3}}
$$

Modulation Index

- Maximum modulation index $M_{\max }$

$$
M_{\max }=\frac{\sqrt{3}}{V_{S}} \times \frac{V_{S}}{\sqrt{3}}=1
$$

- Range of the modulation index for SVM

$$
0 \leq M_{\max } \leq 1
$$

3.4 Space Vector Sequence

- SV sequence should assure that the load line voltages have the quarterwave symmetry to reduce even harmonics in their spectra
- To reduce the switching frequency, it is also necessary to arrange the switching sequence in such a way that the transition from one to the next is performed by switching only one inverter leg at a time
- The transition for moving from one sector in the space vector diagram to the next requires no or a minimum number of switching
- These conditions are met by the sequence $V_{z}, V_{n}, V_{n+1} V z$ (where V_{z} is alternately chosen between V_{0} and V_{7})

3.4 Space Vector Sequence

- If V_{r} falls in section 1 , the switching sequence is $V_{0}, V_{1}, V_{2}, V_{7}, V_{2}, V_{1}, V_{0}$
- $T_{z}\left(=T_{0}=T_{7}\right)$ can be split and distributed at the beginning and at the end of the sampling period T_{s}
- In general, the time intervals of the null vectors are equally distributed with $T_{z} / 2$ at the beginning and $T_{z} / 2$ at the end

3.4 Space Vector Sequence

3.4 Space Vector Sequence

SVM pattern has the following characteristics

- The SVM pattern has a quarter-wave symmetry
- The dwell times for the seven segments add up to the sampling period ($T_{s}=T_{1}+T_{2}+T_{z}$) or a multiple of T_{s}
- The transition from state (000) to state (100) involves only two switches and is accomplished by turning $Q_{1} \mathrm{ON}$ and Q_{4} OFF
- The switching state (111) is selected for the $T_{z} / 2$ segment in the centre to reduce the number of switching per sampling period. The switching state (000) is selected for the $T_{z} / 2$ segments on both sides
- Each of the switches in the inverter turns ON and OFF once per sampling period. The switching frequency $f_{s w}$ of the devices is thus equal to the sampling frequency $f_{s}=1 / T_{s}$ or its multiple
- The pattern of waveform can be produced for a duration of $n T_{s}$ that is a multiple (n) or a fraction ($1 / \mathrm{n}$) of the sampling period T_{s} by either multiplying or dividing the dwell times by n. ie, if we multiply by 2 , the segments will cover two sampling periods

3.4 Space Vector Sequence

- Instantaneous phase voltages can be found by time averaging of the SVs during one switching period for sector 1

$$
\begin{aligned}
& v_{a N}=\frac{V_{s}}{2 T_{s}}\left(\frac{-T_{z}}{2}+T_{1}+T_{2}+\frac{T_{z}}{2}\right)=\frac{V_{s}}{2} \sin \left(\frac{\pi}{3}+\theta\right) \\
& v_{b N}=\frac{V_{s}}{2 T_{s}}\left(\frac{-T_{z}}{2}-T_{1}+T_{2}+\frac{T_{z}}{2}\right)=V_{s} \frac{\sqrt{3}}{2} \sin \left(\theta-\frac{\pi}{6}\right) \\
& v_{c N}=\frac{V_{s}}{T_{s}}\left(\frac{-T_{z}}{2}-T_{1}-T_{2}+\frac{T_{z}}{2}\right)=-V_{a N}
\end{aligned}
$$

- To minimize uncharacteristic harmonics in SV modulation, the normalized sampling frequency $f_{s n}$ should be an integer multiple of ie, $T \geq 6 n T_{s}$ for $n=1,2,3 \ldots \ldots$. . Hence all the six sectors will be equally used in one period for producing symmetric line output voltages

3.4 Space Vector Sequence

3.4 Space Vector Sequence

Switching Segments for all SVM Sectors

Sector	Segment	1	2	3	4	5	6	7
$\mathbf{1}$	Vector	$\mathbf{V}_{\mathbf{0}}$	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{7}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{0}}$
	State	000	100	110	111	110	100	000
$\mathbf{2}$	Vector	$\mathbf{V}_{\mathbf{0}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{7}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{V}_{\mathbf{0}}$
	State	000	010	110	111	110	010	000
$\mathbf{3}$	Vector	$\mathbf{V}_{\mathbf{0}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{V}_{\mathbf{4}}$	$\mathbf{V}_{\mathbf{7}}$	$\mathbf{V}_{\mathbf{4}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{V}_{\mathbf{0}}$
	State	000	010	011	111	011	010	000
$\mathbf{4}$	Vector	$\mathbf{V}_{\mathbf{0}}$	$\mathbf{V}_{\mathbf{5}}$	$\mathbf{V}_{\mathbf{4}}$	$\mathbf{V}_{\mathbf{7}}$	$\mathbf{V}_{\mathbf{4}}$	$\mathbf{V}_{\mathbf{5}}$	$\mathbf{V}_{\mathbf{0}}$
	State	000	001	011	111	011	001	000
$\mathbf{5}$	Vector	$\mathbf{V}_{\mathbf{0}}$	$\mathbf{V}_{\mathbf{5}}$	$\mathbf{V}_{\mathbf{6}}$	$\mathbf{V}_{\mathbf{7}}$	$\mathbf{V}_{\mathbf{6}}$	$\mathbf{V}_{\mathbf{5}}$	$\mathbf{V}_{\mathbf{0}}$
	State	000	001	101	111	101	001	000
$\mathbf{6}$	Vector	$\mathbf{V}_{\mathbf{0}}$	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{6}}$	$\mathbf{V}_{\mathbf{7}}$	$\mathbf{V}_{\mathbf{6}}$	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{0}}$
	State	000	100	101	111	101	100	000

Over-modulation

- In over-modulation, the reference vector follows a circular trajectory that extends the bounds of the hexagon
- The portions of the circle inside the hexagon utilize the same SVM equations for determining the state times $T_{n}, T_{n+} 1$ and T_{z} such that

$$
\begin{aligned}
& T_{1}=T_{s} M \sin \left(\frac{\pi}{3}-\theta\right) \\
& T_{2}=T_{s} M \sin (\theta) \\
& T_{z}=T_{s}-T_{1}-T_{2}
\end{aligned}
$$

Over-modulation

- The portions of the circle outside the hexagon are limited by the boundaries of the hexagon and the corresponding time states T_{n} and T_{n+1} can be obtained as

$$
\begin{aligned}
T_{n} & =T_{s} \frac{\sqrt{3} \cos (\theta)-\sin (\theta)}{\sqrt{3} \cos (\theta)+\sin (\theta)} \\
T_{n+1} & =T_{s} \frac{2 \sin (\theta)}{\sqrt{3} \cos (\theta)+\sin (\theta)} \\
T_{z} & =T_{s}-T_{1}-T_{2}=0
\end{aligned}
$$

- Maximum modulation index M for SVM is $M_{\max }=2 / \sqrt{3}$
- For $0<M<1$, the inverter operates in the normal SVM
- For $M>2 / \sqrt{3}$, the inverter operates completely in the six-step output mode
- Six-step operation switches the inverter only to the six vectors as shown in table, thereby minimizing the number of switching at one time

Over-modulation

Switch States for Three-Phase Voltage-Source Inverter

State	State No.	Switch States	$v_{a b}$	$v_{b c}$	$v_{c a}$	Space Vector
S_{1}, S_{2}, and S_{6} are on and S_{4}, S_{5}, and S_{3} are off	1	100	V_{S}	0	$-V_{S}$	$\mathbf{V}_{\mathbf{1}}=1+j 0.577=2 / \sqrt{3} \angle 30^{\circ}$
S_{2}, S_{3}, and S_{1} are on and S_{5}, S_{6}, and S_{4} are off	2	110	0	V_{S}	$-V_{S}$	$\mathbf{V}_{\mathbf{2}}=j 1.155=2 / \sqrt{ } 3 \angle 90^{\circ}$
S_{3}, S_{4}, and S_{2} are on and S_{6}, S_{1}, and S_{5} are off	3	010	$-V_{S}$	V_{S}	0	$\mathbf{V}_{3}=-1+j 0.577=2 / \sqrt{3} \angle 150^{\circ}$
S_{4}, S_{5}, and S_{3} are on and S_{1}, S_{2}, and S_{6} are off	4	011	$-V_{S}$	0	V_{S}	$\mathbf{V}_{\mathbf{4}}=-1-j 0.577=2 /, 3 \angle 210^{\circ}$
S_{5}, S_{6}, and S_{4} are on and S_{2}, S_{3}, and S_{1} are off	5	001	0	$-V_{S}$	V_{S}	$\mathbf{V}_{5}=-j 1.155=2 / \sqrt{ } 3 \angle 270^{\circ}$
S_{6}, S_{1}, and S_{5} are on and S_{3}, S_{4}, and S_{2} are off	6	101	VS	$-V_{S}$	0	$\mathbf{V}_{6}=1-j 0.577=2 / \sqrt{3} \angle 330^{\circ}$
S_{1}, S_{3}, and S_{5} are on and S_{4}, S_{6}, and S_{2} are off	7	111	0	0	0	$\mathbf{V}_{7}=0$
S_{4}, S_{6}, and S_{2} are on and S_{1}, S_{3}, and S_{5} are off	8	000	0	0	0	$\mathbf{V}_{0}=0$

Over-modulation

- For $1<M<2 / \sqrt{3}$, the inverter operates in over-modulation, which is normally used as a transitioning step from the SVM techniques into a six-step operation
- Over-modulation allows more utilization of the DC input voltage than the standard SVM techniques
- But it results in non-sinusoidal output voltages with a high degree of distortion, especially at a low-output frequency

SVM Implementation

Steps

- Transformation from the three-phase reference signals to two-phase signals by abc to $\alpha-\beta$ transformation into two components $v_{r \alpha}$ and $v_{r} \beta$
- Find magnitude V_{r} and the angle θ of the reference vector

$$
\begin{aligned}
& V_{r}=\sqrt{v_{r \alpha}^{2}+v_{r \beta}^{2}} \\
& \theta=\tan ^{-1} \frac{v_{r \beta}}{v_{r \alpha}}
\end{aligned}
$$

- Calculate the sector angle θ_{k}
- Calculate the modulation index M
- Calculate the dwell times T_{1}, T_{2} and T_{z}
- Determine the gating signals and their sequence

SVM Implementation

Block Diagram

4. Comparison of Sine PWM \& Space Vector PWM

- Any modulation scheme can be used to create the variable-frequency, variable-voltage ac waveforms
- Sinusoidal PWM
- Sinusoidal PWM compares a high frequency triangular carrier with three sinusoidal reference signals (modulating signals), to generate the gating signals for the inverter switches
- Analog domain technique
- Commonly used in power conversion with both analog and digital implement
- Third-harmonic PWM
- Cancellation of the third-harmonic components and better utilization of the DC supply
- Preferred in three-phase applications

4. Comparison of Sine PWM \& Space Vector PWM

- SV Method
- Does not consider each of the three modulating voltages as a separate identity
- Three voltages are simultaneously taken into account within a twodimensional reference frame ($\alpha-\beta$ plane) and the complex reference vector is processed as a single unit
- Lower harmonics
- Higher modulation index
- Complete digital implementation by a single-chip microprocessor
- Due to it's flexibility of manipulation, SVM is preferred in power converters and motor control

4. Comparison of Sine PWM \& Space Vector PWM

Summary of modulation schemes for Three-phase inverters with $\mathrm{M}=1$

	Summary of Modulation Techniques		
	Normalized Phase Voltage, V_{P} / V_{S}	Normalized Line Voltage, V_{L} / V_{S}	Output Modulation Type
Sinusoidal PWM	0.5	$0.5 \times \sqrt{2}=0.8666$	Sinusoidal
60° PWM	$1 / \sqrt{3}=0.57735$	1	Sinusoidal
Third-harmonic PWM	$1 / \sqrt{3}=0.57735$	1	Sinusoidal
SVM	$1 / 3=0.57735$	1	Sinusoidal
Overmodulation	Higher than the	Higher than the	Nonsinusoidal
Six-step	value for $M=1$	value for $M=1$	
	$2 / 3=0.4714$,$(2 / 3)=0.81645$	Nonsinusoidal

5. Programmed Harmonic Elimination Switching

- Selective Harmonic Elimination Switching
- Combines square-wave switching and PWM
- To control fundamental output voltage
- To eliminate the designated harmonics from the output

5. Programmed Harmonic Elimination Switching

5. Programmed Harmonic Elimination Switching

- $V_{A o}$ of an inverter leg, normalized by $1 / 2 V_{d}$ is plotted
- Six notches are introduced in the otherwise square-wave output, to control the magnitude of the fundamental voltage and to eliminate fifth and seventh harmonics
- On a half-cycle basis, each notch provides one degree of freedom
- Having three notches per half-cycle provides control of fundamental and elimination of two harmonics (in this case fifth and seventh)
- Output waveform has odd half-wave symmetry \Longrightarrow only odd harmonics (coefficients of sine series) will be present
- In three-phase inverter, third harmonic and its multiples are cancelled out in the output
- These harmonics need not be eliminated from the output of the inverter leg by means of waveform notching
- Switching frequency of a switch is seven times the switching frequency associated with a square-wave operation

5. Programmed Harmonic Elimination Switching

- In a square-wave operation, the fundamental-frequency voltage componen

$$
\frac{\left(\hat{V}_{A o}\right)_{1}}{V_{d} / 2}=\frac{4}{\pi}=1.273
$$

- Maximum available fundamental amplitude is reduced because of the notches to eliminate fifth and seventh harmonics

$$
\frac{\left(\hat{V}_{A o}\right)_{1, \max }}{V_{d} / 2}=1.188
$$

- The required values of α_{1}, α_{2} and α_{3} are plotted as a function of the normalized fundamental in the output voltage

5. Programmed Harmonic Elimination Switching

5. Programmed Harmonic Elimination Switching

- To allow control over the fundamental output and to eliminate the $5^{\text {th }}, 7^{\text {th }}, 11^{\text {th }}$ and $13^{\text {th }}$ order harmonics, five notches per half-cycle would be needed
- Each switch would have 11 times the switching frequency compared with a square-wave operation
- Programmed harmonic elimination scheme can be implemented with the help of very large scale integrated (VLSI) circuits and microcontrollers
- Without making the switching frequency (and therefore the switching losses) very high, it allows the undesirable lower order harmonics to be eliminated
- Higher order harmonics can be filtered by a small filter, if necessary
- Before selecting this technique, it should be compared with a sinusoidal PWM technique with a low m_{f} to evaluate which one is better
- Distortions due to the blanking time, will occur

6. Current Controlled Voltage Source Inverter

- Motor servo drives \rightarrow Motor current (supplied by the switch-mode converter or inverter) needs to be controlled
- Output-stage current can be controlled in order to regulate the output voltage
- Control schemes are used to generated switching signals for the inverter switches in order to control the inverter output current
(1) Tolerance Band Control
(2) Fixed-Frequency Control

6.1 Tolerance Band Control

6.1 Tolerance Band Control

6.1 Tolerance Band Control

Comparator tolerance band

6.1 Tolerance Band Control

- Hysteresis Current Control
- Sinusoidal reference current: $i_{A *}$
- Actual phase current: i_{A}
- Actual phase current is compared with the tolerance band around the reference current associated with that phase
- If the actual current tries to go beyond the upper tolerance band, T_{A-} is turned $\mathrm{ON} \Longrightarrow T_{A+}$ is turned OFF
- The opposite switching occurs if the actual current tries to go below the lower tolerance band
- Switching frequency depends on how fast the current changes from the upper limit to the lower limit and vice versa \rightarrow it depends on V_{d}, load back-emf, and the load inductance
- Switching frequency does not remain constant but varies along the current waveform

6.2 Fixed-Frequency Control

6.2 Fixed-Frequency Control

- Error between the reference and the actual current is amplified or fed through a proportional integral (PI) controller
- Output $v_{\text {control }}$ of the amplifier is compared with a fixed-frequency (switching frequency f_{s}) triangular waveform $v_{t r i}$
- A positive error $\left(i_{A_{*}}-i_{A}\right) \rightarrow$ a positive $v_{\text {control }} \rightarrow$ results in a larger inverter output voltage \rightarrow brings i_{A} back to it's reference value
- The load voltage (derived from the model of the load) is used as a compensating feed forward signal
(1) Mohan, Undeland, Robbins, "Power Electronics Converters Application and Design", Wiley-India
(2) Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Pearson Education
(3) Abraham Pressman, "Switching Power supply Design", McGraw Hill

Thank You

*for private circulation only

Switched Mode Power Converters (S6 EEE - EE364)

Prof. Dinto Mathew
Asst. Professor
Dept. of EEE, MACE

Overview I

（1）Resonant Converters
－Classification of Resonant Converters
（2）Basic Resonant Circuit Concepts
（3）Series Resonant Circuit
－Undamped Series－Resonant Circuit
－Series－Resonant Circuit with Capacitor－Parallel Load
－Frequency Characteristics of Series－Resonant Circuit
（4）Parallel Resonant Circuit
－Undamped Parallel Resonant Circuit
－Frequency Characteristics of Parallel－Resonant Circuit
（5）Load Resonant Converter
－Series Loaded Resonant DC－DC Converters
－Parallel Loaded Resonant DC－DC Converters
（6）Resonant Switch Converter
－ZCS Resonant Converter
－L Type

Overview II

- M Type
- ZVS Resonant Converter
- Comparison of ZCS \& ZVS Resonant Converters

1. Resonant Converters

- Switch-mode converters
- Required to turn ON and turn OFF the entire load current during each switching switch-mode operation
- Switches are subjected to high switching stresses
- High switching power loss
- Switching power loss increases linearly with the switching frequency of the PWM
- EMI produced due to large di/dt and dv/dt caused by switch-mode operation

1. Resonant Converters

- Switch-mode converters
- Required to turn ON and turn OFF the entire load current during each switching switch-mode operation
- Switches are subjected to high switching stresses
- High switching power loss
- Switching power loss increases linearly with the switching frequency of the PWM
- EMI produced due to large di/dt and dv/dt caused by switch-mode operation
- Higher switching frequency
- Reduces converter size and weight
- Increases power density

1. Resonant Converters

- Switch-mode converters
- Required to turn ON and turn OFF the entire load current during each switching switch-mode operation
- Switches are subjected to high switching stresses
- High switching power loss
- Switching power loss increases linearly with the switching frequency of the PWM
- EMI produced due to large di/dt and dv/dt caused by switch-mode operation
- Higher switching frequency
- Reduces converter size and weight
- Increases power density
- To realize high switching frequencies in converters
- Switch in a converter should change its status (from ON to OFF or vice versa) when the voltage across it and/or the current through it is zero at the switching instant \Longrightarrow Zero-voltage Switching and/or Zero-current Switching \rightarrow Resonant Converters

1.1 Classification of Resonant Converters

- Converter topologies \& switching strategies that result in zero-voltage and/or zero-current switchings

1.1 Classification of Resonant Converters

- Converter topologies \& switching strategies that result in zero-voltage and/or zero-current switchings

Classification

(1) Load-resonant Converters
(2) Resonant-switch Converters
(3) Resonant-DC-link Converters
(9) High-frequency-link integral-half-cycle Converters

Load Resonant Converters

- LC resonant tank circuit is used
- Oscillating v \& i, due to LC resonance in the tank are applied to the load, and the converter switches can be switched at zero voltage and/or zero current instant
- Series LC or Parallel LC circuit
- Power flow to the load is controlled by the resonant tank impedance, which in turn is controlled by the switching frequency f_{s}, in comparison to the resonant frequency f_{o}, of the tank

三

Load Resonant Converters

- LC resonant tank circuit is used
- Oscillating v \& i, due to LC resonance in the tank are applied to the load, and the converter switches can be switched at zero voltage and/or zero current instant
- Series LC or Parallel LC circuit
- Power flow to the load is controlled by the resonant tank impedance, which in turn is controlled by the switching frequency f_{s}, in comparison to the resonant frequency f_{o}, of the tank

Classification

1 Voltage-source Series-resonant Converters
a Series-loaded Resonant (SLR) Converters
b Parallel-loaded Resonant (PLR) Converters
c Hybrid-resonant Converters
2 Current-source Parallel-resonant Converters
3 Class E and Subclass E Resonant Converters

Resonant Switch Converters

- Quasi-resonant converters
- During one switching-frequency time period, there are resonant as well as non-resonant operating intervals

틀

Resonant Switch Converters

- Quasi-resonant converters
- During one switching-frequency time period, there are resonant as well as non-resonant operating intervals

Classification

(1) Resonant-switch dc-dc converters
(1) Zero-current-switching (ZCS) converters
(2) Zero-voltage-switching (ZVS) converters
(2) Pseudo-resonant converter and Clamped-voltage converter (Resonant-transition converter)

Resonant DC Link Converters

- Conventional switch-mode PWM DC-AC inverters
- Input V_{d} is a fixed-magnitude DC
- Sinusoidal output is obtained by switch-mode PWM switchings

Resonant DC Link Converters

- Conventional switch-mode PWM DC-AC inverters
- Input V_{d} is a fixed-magnitude DC
- Sinusoidal output is obtained by switch-mode PWM switchings

Resonant DC Link Converters

- Input voltage is made to oscillate around V_{d}, by means of an LC resonance so that the input voltage remains zero for a finite duration during which the status of the inverter switches can be changed \Longrightarrow Zero-voltage switching

High-frequency-link integral-half-cycle Converters

- Input is a high-frequency sinusoidal AC supply
- Bidirectional switches are used
- Low-frequency AC output of adjustable magnitude and frequency OR an adjustable-magnitude DC
- Switches are turned ON and OFF at the zero crossings of the input voltage

2. Basic Resonant Circuit Concepts

- Generalized analysis of resonant converters
- Initial conditions are indicated by uppercase letters, Subscript 0, and square brackets $\rightarrow\left[V_{c 0}\right]$ and $\left[I_{L 0}\right]$

3. Series Resonant Circuit

Analysis of Series Resonant Circuit:
(1) Undamped Series-Resonant Circuit
(2) Series-Resonant Circuit with Capacitor-Parallel Load
(3) Frequency Characteristics of Series-Resonant Circuit

3.1 Undamped Series-Resonant Circuit I

- State variables
- Inductor current i_{L}
- Capacitor voltage v_{c}

3.1 Undamped Series-Resonant Circuit II

$$
\begin{gathered}
L_{r} \frac{d i_{L}}{d t}+v_{c}=V_{d} \\
C_{r} \frac{d v_{c}}{d t}=i_{L} \\
i_{L}(t)=I_{L 0} \cos \omega_{0}\left(t-t_{0}\right)+\frac{V_{d}-V_{c 0}}{Z_{o}} \sin \omega_{0}\left(t-t_{0}\right) \\
v_{c}(t)=V_{d}-\left(V_{d}-V_{c 0}\right) \cos \omega_{0}\left(t-t_{0}\right)+Z_{0} I_{L 0} \sin \omega_{0}\left(t-t_{0}\right)
\end{gathered}
$$

- Angular resonance frequency

$$
\omega_{0}=2 \pi f_{0}=\frac{1}{\sqrt{L_{r} C_{r}}}
$$

- Characteristic impedance

3.1 Undamped Series-Resonant Circuit III

$$
Z_{0}=\sqrt{\frac{L_{r}}{C_{r}}} \quad \Omega
$$

$$
\begin{aligned}
& V_{\text {base }}=V_{d} \\
& I_{\text {base }}=\frac{V_{d}}{Z_{0}}
\end{aligned}
$$

3.2 Series-Resonant Circuit with Capacitor-Parallel Load I

- Capacitor is in parallel with a current source I_{0}, which represents the load
- DC quantities: V_{d} and I_{0}
- Initial conditions at $t_{0}: I_{\text {Lo }}$ and $V_{c o}$

3.2 Series-Resonant Circuit with Capacitor-Parallel Load II

$$
\begin{gathered}
v_{c}=V_{d}-L_{r} \frac{d i_{L}}{d t} \\
i_{L}-i_{c}=I_{o} \\
i_{c}=C_{r} \frac{d v_{c}}{d t}=-L_{r} C_{r} \frac{d^{2} i_{L}}{d t^{2}} \\
\frac{d^{2} i_{L}}{d t^{2}}+\omega_{0}^{2} i_{L}=\omega_{0}^{2} I_{o}
\end{gathered}
$$

where ω_{0} is the angular frequency

$$
\begin{gathered}
i_{L}(t)=I_{o}+\left(I_{L 0}-I_{o}\right) \cos \omega_{0}\left(t-t_{0}\right)+\frac{V_{d}-V_{c 0}}{Z_{0}} \sin \omega_{0}\left(t-t_{0}\right) \\
v_{c}(t)=V_{d}-\left(V_{d}-V_{c 0}\right) \cos \omega_{0}\left(t-t_{0}\right)+Z_{0}\left(I_{L 0}-I_{o}\right) \sin \omega_{0}\left(t-t_{0}\right)
\end{gathered}
$$

where Z_{0} is the characteristic impedance

3.2 Series-Resonant Circuit with Capacitor-Parallel Load III

- If $V_{C O}=0$ and $I_{L O}=I_{0}$ then

$$
i_{L}(t)=I_{o}+\frac{V_{d}}{Z_{0}} \sin \omega_{0}\left(t-t_{0}\right)
$$

and

$$
v_{c}(t)=V_{d}\left[1-\cos \omega_{0}\left(t-t_{0}\right)\right]
$$

3.3 Frequency Characteristics of Series-Resonant Circuit I

- Resonance frequency: ω_{0}
- Characteristic impedance: Z_{0}

- Quality Factor (Q)

$$
Q=\frac{\omega_{0} L_{r}}{R}=\frac{1}{\omega_{0} C_{r} R}=\frac{Z_{0}}{R}
$$

3.3 Frequency Characteristics of Series-Resonant Circuit II

- Magnitude Z_{s} of the circuit impedance as a function of frequency with Q as a parameter, keeping R constant
- Z_{s} is a pure resistance equal to R at $\omega_{s}=\omega_{0}$ and is very sensitive tor frequency deviation from ω_{0} at higher values of Q

3.3 Frequency Characteristics of Series-Resonant Circuit III

- Current phase angle $\theta\left(=\theta_{i}-\theta_{v}\right)$ as a function of frequency
- At frequencies below $\omega_{0}\left(\omega_{s}<\omega_{0}\right)$
- Current leads voltage
- Capacitor impedance dominates over inductor impedance
- At frequencies above $\omega_{0}\left(\omega_{s}>\omega_{0}\right)$
- Current lags voltage
- Inductor impedance dominates over the capacitor impedance

4.1 Undamped Parallel Resonant Circuit I

- Undamped parallel-resonant circuit supplied by a dc current I_{d}
- Initial conditions at time $t=t_{0}: I_{L 0}$ and $V_{c 0}$
- State variables
- Inductor current i_{L}
- Capacitor voltage V_{c}

4.1 Undamped Parallel Resonant Circuit II

$$
\begin{gathered}
i_{L}+C_{r} \frac{d v_{c}}{d t}=I_{d} \\
v_{c}=L_{r} \frac{d i_{L}}{d t}
\end{gathered}
$$

- Solution for $t \geq t_{0}$

$$
\begin{gathered}
i_{L}(t)=I_{d}+\left(I_{L 0}-I_{d}\right) \cos \omega_{0}\left(t-t_{0}\right)+\frac{V_{c 0}}{Z_{0}} \sin \omega_{0}\left(t-t_{0}\right) \\
\nu_{c}(t)=Z_{0}\left(I_{d}-I_{L 0}\right) \sin \omega_{0}\left(t-t_{0}\right)+V_{c 0} \cos \omega_{0}\left(t-t_{0}\right) \\
\omega_{0}=\frac{1}{\sqrt{L_{r} C_{r}}} \quad Z_{0}=\sqrt{\frac{L_{r}}{C_{r}}}
\end{gathered}
$$

4.2 Frequency Characteristics of Parallel-Resonant Circuit

 I

- Resonance frequency: ω_{0}
- Characteristic Impedance: Z_{0}
- With Load Resistor $\mathrm{R} \rightarrow$ Quality Factor(Q)

4.2 Frequency Characteristics of Parallel-Resonant Circuit II

$$
Q=\omega_{0} R C_{r}=\frac{R}{\omega_{0} L_{r}}=\frac{R}{Z_{0}}
$$

- Characteristics

4.2 Frequency Characteristics of Parallel-Resonant Circuit III

4.2 Frequency Characteristics of Parallel-Resonant Circuit

- Magnitude Z_{p}, of the circuit impedance as a function of frequency with Q as a parameter, keeping R constant
- Voltage phase angle $\theta\left(=\theta_{v}-\theta_{i}\right)$ as a function of frequency
- For frequencies below $\omega_{0}\left(\omega_{s}<\omega_{0}\right)$, voltage leads the current \rightarrow Inductor impedance is lower than the capacitor impedance \rightarrow Inductor current dominates
- For frequencies above $\omega_{0}\left(\omega_{s}>\omega_{0}\right)$, capacitor impedance is lower \rightarrow Voltage lags the current with the voltage phase angle θ approaching -90°

5. Load Resonant Converter

- LC tank is used
- Oscillating load voltage and current
- Provides zero-voltage and/or zero-current switchings
- Only the steady-state operation is considered in the analysis

5.1 Series Loaded Resonant DC-DC Converters I

- Half-bridge configuration of the SLR converter

- Transformer can be used
- To provide the output voltage of a desired magnitude

5.1 Series Loaded Resonant DC-DC Converters II

- To provide electrical isolation between the input and the output
- Series-resonant Tank Circuit
- Output load appears in series with the resonant tank
- L_{r} and C_{r}
- Current through the resonant tank circuit is full-wave rectified at the output
- $\left|i_{L}\right|$ feeds the output stage
- Filter capacitor $C \Longrightarrow$ Output voltage across the capacitor can be assumed to be a DC voltage without any ripple
- Resistive power loss in the resonant circuit is assumed to be negligible
- Output voltage V_{0}, is reflected across the rectifier input as $V_{B^{\prime} B}$
- $V_{B^{\prime} B}=V_{0}$, if i_{L} is positive
- i i flows through T_{+}, if it is ON, otherwise it flows through the diode D-
- $V_{B^{\prime} B}=-V_{0}$, if i_{L} is negative

5.1 Series Loaded Resonant DC-DC Converters III

- i_{L} flows through T_{-}, if it is ON, otherwise it flows through the diode D_{+}
- For $i>0$
- T_{+}conducting

$$
\text { - } v_{A B}=+\frac{1}{2} V_{d} \text { and } v_{A B^{\prime}}=+\frac{1}{2} V_{d}-V_{o}
$$

- D_{-}conducting

$$
v_{A B}=-\frac{1}{2} V_{d} \text { and } v_{A B^{\prime}}=-\frac{1}{2} V_{d}-V_{o}
$$

- For $i<0$
- T_{-}conducting

$$
\text { - } v_{A B}=-\frac{1}{2} V_{d} \text { and } v_{A B^{\prime}}=-\frac{1}{2} V_{d}+V_{o}
$$

- D_{+}conducting
- $v_{A B}=+\frac{1}{2} V_{d}$ and $v_{A B^{\prime}}=+\frac{1}{2} V_{d}+V_{o}$
- Voltage applied across the tank $\left(v_{A B^{\prime}}\right)$ depends on
- Which device is conducting
- Direction of i_{L}

5.1 Series Loaded Resonant DC-DC Converters IV

- In steady-state symmetrical operation, both the switches are operated identically
- In SLR converter, output voltage (V_{0}), cannot exceed the input voltage $\left(+\frac{1}{2} V_{d}\right) \Longrightarrow V_{0}<+\frac{1}{2} V_{d}$
- Switching frequency $f_{s}\left(=\omega_{s} / 2 \pi\right)$ can be controlled to be less than or greater than the resonance frequency $f_{0}\left(=\omega_{0} / 2 \pi\right)$ if the converter consists of self-controlled switches
- Three possible modes of operation based on the ratio of switching frequency ω_{s}, to the resonance frequency ω_{0}, which determines if i_{L} flows continuously or discontinuously

Discontinuous-Conduction Mode with $\left(\omega_{s}<\frac{1}{2} \omega_{0}\right)$ I

Discontinuous-Conduction Mode with $\left(\omega_{s}<\frac{1}{2} \omega_{0}\right)$ II

- Waveforms in steady state condition are analyzed
- At $\omega_{0} t_{0}$, switch T_{+}, is turned ON
- i i builds up from it's zero value
- Capacitor voltage builds up from it's initial negative value $V_{c o}=-2 V_{o}$
- After 180° subsequent to $\omega_{0} t_{0}$, at $\omega_{0} t_{1}$
- Inductor current reverses \rightarrow flows through D_{+}, since T_{-}is not yet turned ON
- After 180° subsequent to $\omega_{0} t_{1}$, at $\omega_{0} t_{2}$
- i_{L} goes to zero and remains zero as no switches are ON
- Symmetrical operation requires that v_{c}, during the discontinuous interval $\omega_{0}\left(t_{3}-t_{2}\right)$ be negative of $V_{c o} \Longrightarrow 2 V_{o}$
- At $\omega_{0} t_{3}$
- T_{-}is turned ON
- Next half-cycle ensues

Discontinuous-Conduction Mode with $\left(\omega_{s}<\frac{1}{2} \omega_{0}\right)$ III

- Because of the discontinuous interval, one half-cycle of the operating frequency exceeds 360° of the resonance frequency $f_{0} \Longrightarrow$ Mode of operation with $\omega_{s}<\frac{1}{2} \omega_{0}$
- Switches turn OFF naturally at zero current and at zero voltage, since the inductor current goes through zero
- Switches turn ON at zero current but not at zero voltage
- Average of the rectified inductor current $\left|i_{L}\right|=I_{0}$
- Disadvantage
- Relatively large peak current in the circuit \rightarrow higher conduction losses, compared with the continuous-conduction mode

Continuous-Conduction Mode with $\left(\frac{1}{2} \omega_{0}<\omega_{s}<\omega_{0}\right)$ ।

Continuous-Conduction Mode with $\left(\frac{1}{2} \omega_{0}<\omega_{s}<\omega_{0}\right)$ II

- Operation
- At $\omega_{0} t_{0}$
- T_{+}turns ON with a finite value of the inductor current and at a preconduction switch voltage of V_{d}
- T^{+}conducts for less than 180°
- At $\omega_{0} t_{1}$
- i_{L} reverses and flows through D_{+}
- T_{+}turns OFF naturally
- At $\omega_{0} t_{2}$
- T_{-}is turned ON
- i_{L} transfers from D_{+}to T_{-}
- D_{+}, conducts for less than 180° because T_{-}is switched ON early, compared with the discontinuous-conduction mode
- In this mode of operation, the switches turn ON at a finite current and at a finite voltage, thus resulting in a turn-on switching loss

Continuous-Conduction Mode with $\left(\frac{1}{2} \omega_{0}<\omega_{s}<\omega_{0}\right)$ III

- Freewheeling diodes must have good reverse-recovery characteristics to avoid large reverse current spikes flowing through the switches
- Turn-off switches occurs naturally at zero current and at zero voltage as the inductor current through them goes to zero and reverses through the freewheeling diodes \rightarrow Possible to use thyristors as switches in low switching-frequency applications

Continuous-Conduction Mode with $\left(\omega_{s}>\omega_{0}\right)$ ।

Continuous-Conduction Mode with $\left(\omega_{s}>\omega_{0}\right)$ II

- Switches in this mode with $\omega_{s}>\omega_{0}$ are forced to turn OFF a finite current, but they are turned ON at zero current and zero voltage
- Operation
- At $\omega_{0} t_{0}$
- T_{+}starts conduction at zero current when the inductor current reverses in direction
- At $\omega_{0} t_{1}$
- T_{+}is forced to turn OFF before the half-cycle of the current oscillation ends
- Positive i_{L} is forced to flow through D_{-}
- At $\omega_{0} t_{2}$
- Current through the diode reaches zero quickly
- T_{-}is gated on as soon as D_{-}begins to conduct so that it can conduct when i_{L} reverses
- Combined conduction interval for T_{+}and D_{-}is equal to one half-cycle of operation at the switching frequency of ω_{s}
$\Longrightarrow \omega_{s}>\omega_{0}$
- Advantages

Continuous-Conduction Mode with $\left(\omega_{s}>\omega_{0}\right)$ III

- Switches turn ON at a zero current and zero voltage
- Freewheeling diodes do not need to have very fast reverse-recovery characteristics
- Disadvantages
- Switches need to force turn OFF near the peak of i_{L}, thus causing a large turn-off switching loss

5.2 Parallel Loaded Resonant DC-DC Converters I

5.2 Parallel Loaded Resonant DC-DC Converters II

- Output stage is connected in parallel with the resonant-tank capacitor C_{r}
- Voltage across the resonant-tank capacitor C_{r} is rectified, filtered, and then supplied to the load
- Current through the output filter inductor can be assumed to be a ripple-free dc current I_{0} during a switching frequency time period based on an assumption of high switching frequency and a sufficiently large value of the filter inductor
- Voltage across the resonant tank depends on the devices conducting
- T_{+}or $D_{+}: \mathbf{O N} \Longrightarrow v_{A B}=+\frac{1}{2} V_{d}$
- T_{-}or $D_{-}: \mathbf{O N} \Longrightarrow v_{A B}=-\frac{1}{2} V_{d}$
- Input voltage to the tank $\left(v_{A B}\right) s$ equal in magnitude to $+\frac{1}{2} V_{d}$ but its polarity depends on which switch is turned on (T_{+}, or T_{-})
- Current $i_{B^{\prime} B}$ equals I_{O} in magnitude, but it's direction depends on the ${ }^{2}$ polarity of the voltage v_{c} across C_{r}

5.2 Parallel Loaded Resonant DC-DC Converters III

- Parallel Loaded Resonant (PLR) Converter Vs Series Loaded Resonant (SLR) Converter
- PLR converters appear as a voltage source \rightarrow Better suited for multiple outlets
- PLR converters can step up as well as step down the voltage, unlike the SLR Converters, which can operate only as a step-down converter (not counting the transformer turns ratio)
- Drawback of PLR converters is that it does not possess inherent short-circuit protection capability

6. Resonant Switch Converter I

- Shaping the switch voltage and switch current by LC resonant circuit \rightarrow zero voltage and/or zero current switching \rightarrow Resonant Switch Converter
- Types of Resonant Switch Converters
(1) Zero Current Switching (ZCS) Topology
- Switch turns ON and OFF at zero current
- Peak resonant current flows through the switch
- Peak switch voltage remains the same as in its switch-mode counterpart

6. Resonant Switch Converter II

Figure: ZCS DC-DC Converter (Step-down)
(2) Zero Voltage Switching (ZVS) Topology

- Switch turns ON and OFF at zero voltage
- Peak voltage appears across the switch
- Peak switch current remains the same as in its switch-mode counterpart

Figure: ZVS DC-DC Converter (Step-down)

6. Resonant Switch Converter III

(3) Zero Voltage Switching, Clamped Voltage (ZVS-CV) Topology

- Switch turns ON and OFF at zero voltage
- Consists of at least one converter leg made up of two switches
- Peak switch voltage remains the same as in its switch-mode counterpart
- Peak switch current is higher

Figure: ZVS-CV DC-DC Converter (Step-down)

6.1 ZCS Resonant Converter I

- Switches turn ON and OFF at zero current
- Resonant circuit consists of switch S_{1}, inductor L, and capacitor C
- Inductor L is connected in series with a power switch S_{1} to achieve ZCS
- Inductor L limits the di/dt of the switch current
- L and C constitute a series resonant circuit
- When switch current is zero, there is a current $i=C_{f} d v_{T} / d t$ flowing through the internal capacitance C_{j} due to a finite slope of the switch voltage at turn-off. This current flow causes power dissipation in the switch and limits the high switching frequency
- Switch Configurations
- Half-wave configuration \rightarrow diode D_{1} allows unidirectional current flowe
- Full-wave configuration \rightarrow switch current can flow bidirectionally

6.1 ZCS Resonant Converter II

- For L-type configuration, C can be polarized electrolytic capacitance, whereas the capacitance C for the M-type configuration must be an ac capacitor

L Type I

L Type II

三

L Type III

Mode 1

- Mode 1: $0<t<t_{1}$
- Switch S_{1} is turned ON
- Diode D_{m} conducts
- Inductor current i_{L} rises linearly $\rightarrow i_{L}=\left(V_{s} / L\right) t$
- Mode 1 ends at time $t=t_{1}$ when $i_{L}\left(t=t_{1}\right)=I_{0} \rightarrow t_{1}=I_{o} L / V_{s}$

L Type IV

Mode 2

Mode 2

- Mode 2: $t_{1}<t<t_{2}$
- Switch S_{1} remains ON
- Diode D_{m} is OFF
- Inductor current $i_{L}=I_{m} \sin \omega_{o} t+I_{0}$
- $I_{m}=V_{s} \sqrt{C / L}$
- Capacitor voltage $v_{c}=V_{s}\left(1-\cos \omega_{o} t\right)$

L Type V

- Peak switch current occurs at $t=(\pi / 2) \sqrt{L C} \rightarrow I_{p}=I_{m}+I_{0}$,
- Peak capacitor voltage $V_{c(p k)}=2 V_{s}$
- Mode 2 ends at $t=t_{2}$ when $i_{L}\left(t=t_{2}\right)=I_{0}$ and $v_{c}\left(t=t_{2}\right)=V_{c 2} 2 V_{s} \rightarrow t_{2}=\pi \sqrt{L C}$

Mode 3

- Mode 3: $t_{2}<t<t_{3}$

L Type VI

- Inductor current falls from I_{0} to zero

$$
i_{L}=I_{o}-I_{m} \sin \omega_{o} t
$$

- Capacitor voltage $v_{c}=2 V_{s} \cos \omega_{o} t$
- Mode 3 ends at $t=t_{3}$ when $i_{L}\left(t=t_{3}\right)=0$ and
$v_{c}=\left(t=t_{3}\right)=V_{c 3} \rightarrow t_{3}=\sqrt{L C} \sin ^{-1}(1 / x)$ where $x=I_{m} / I_{0}=\left(V_{s} / I_{0}\right) \sqrt{C / L}$

Mode 4

Mode 4

L Type VII

- Mode 4: $t_{3}<t<t_{4}$
- Capacitor supplies the load current I_{0}
- $v_{c}=V_{c 3}-\left(I_{o} / C\right) t$
- Mode 4 ends at time $t=t_{4}$ when $v_{c}\left(t=t_{4}\right)=0 \rightarrow t_{4}=V_{c 3} C / I_{o}$

Mode 5

- Mode 5: $t_{4}<t<t_{5}$
- Capacitor voltage tends to be negative

L Type VIII

- Diode D_{m} conducts
- Load current I_{0} flows through the diode D_{m}
- Mode 5 ends at $t=t_{5}$ when the switch S_{1} is turned ON again
- $t_{5}=T-\left(t_{1}+t_{2}+t_{3}+t_{4}\right)$
- Peak switch voltage equals to the dc supply voltage V_{s}
- Since the switch current is zero at turn-on and turn-off, the switching loss becomes negligible
- By placing an antiparallel diode across the switch, the output voltage can be made insensitive to load variations

M Type I

M Type II

- 5 Modes of operation

M Type III

Mode 1

- Similar to L type

M Type IV

Mode 2

Mode 2

- Capacitor voltage $v_{c}=V_{s} \cos \omega_{o} t$
- Peak capacitor voltage, $V_{c} p k=V_{s}$
- Mode 2 ends at $t=t_{2} \rightarrow v_{c}\left(t=t_{2}\right)=V_{c 2}=-V_{s}$

M Type V

Mode 3

Mode 3

- Capacitor voltage $v_{c}=-V_{s} \cos \omega_{o} t$
- Mode 3 ends at $t=t_{3} \rightarrow v_{c}\left(t=t_{3}\right)=V_{c 3}$
- $V_{c 3}$ can have a negative value

M Type VI

Mode 4

- Mode 4 ends at $t=t_{4} \rightarrow v_{c}\left(t=t_{4}\right)=V_{s} \Longrightarrow t_{4}=\left(V_{s}-V_{c 3}\right) C 4$

M Type VII

Mode 5

- Similar to L type

6.2 ZVS Resonant Converter I

- Capacitor C is connected in parallel with the switch S_{1} to achieve $Z \mathbb{V}$

6.2 ZVS Resonant Converter II

- Internal switch capacitance C_{j} is added with the capacitor $C \rightarrow$ it affects the resonant frequency
- Half-wave configuration: Switch is implemented with a transistor Q_{1} and an antiparallel diode D_{1} and the voltage across C is clamped by D_{1}
- Full-wave configuration: Diode D_{1} is connected in series with Q_{1} and the voltage across C can oscillate freely
- ZVS resonant converter is the dual of the ZCS resonant
- Equations for the M-type ZCS resonant converter can be applied if i_{L} is replaced by v_{c} and vice versa, L by C and vice versa and V_{s} by I_{o} and vice versa
- 5 modes of operation

6.2 ZVS Resonant Converter III

Mode 1

Mode 1

- Mode 1: $0<t<t_{1}$
- Switch S_{1} and diode D_{m} are OFF
- Capacitor C charges at a constant rate of load current I_{0}
- Capacitor voltage $v_{c}=\left(I_{o} / C\right) t$
- Mode 1 ends at time $t=t_{1}$ when $v_{c}\left(t=t_{1}\right)=V_{s}$ ie $t_{1}=V_{s} C / l_{o}$

6.2 ZVS Resonant Converter IV

Mode 2

Mode 2

- Mode 2: $t_{1}<t<t_{2}$
- S_{1} is still OFF
- Diode D_{m} turns ON
- Capacitor voltage $v_{c}=V_{m} \sin \omega_{o} t+V_{s}$
- $V_{m}=I_{o} \sqrt{L / C}$

6.2 ZVS Resonant Converter V

- Peak switch voltage, which occurs at $t=(\pi / 2) \sqrt{L C}$ is given by $V_{T(p k)}=V_{c(p k)}=I_{o} \sqrt{L / C+V_{s}}$
- Inductor current $i_{L}=I_{0} \cos \omega_{o} t$
- Mode 2 ends at $t=t_{2}$ when $v_{c}\left(t=t_{2}\right)=V_{s}$ and $i_{L}\left(t=t_{2}\right)=-I_{0} \Longrightarrow t_{2}=\pi \sqrt{L C}$

6.2 ZVS Resonant Converter VI

Mode 3

- Mode 3: $t_{2}<t<t_{3}$
- Capacitor voltage falls from V_{s} to zero $\rightarrow v_{c}=V_{s}-V_{m} \sin \omega_{o} t$
- Inductor current iL $=-I_{o} \cos \omega_{o} t$

6.2 ZVS Resonant Converter VII

- Mode 3 ends at $t=t_{3}$ when $v_{c}\left(t=t_{3}\right)=0$ and

$$
\begin{aligned}
& i_{L}\left(t=t_{3}\right)=I_{L 3} \rightarrow t_{3}=\sqrt{L C} \sin ^{-1} \times \text { where } \\
& x=V_{s} / V_{m}=\left(V_{s} / I_{o}\right) \sqrt{C / L}
\end{aligned}
$$

6.2 ZVS Resonant Converter VIII

Mode 4

- Mode 4: $t_{3}<t<t_{4}$
- Switch S1 is turned ON
- Diode D_{m} remains ON
- Inductor current rises linearly from $I_{L 3}$ to $I_{0} \rightarrow i_{L}=I_{L 3}+\left(V_{s} / L\right) t$

6.2 ZVS Resonant Converter IX

- Mode 4 ends at time $t=t_{4}$ when $i_{L}\left(t=t_{4}\right)=0 \rightarrow t_{4}=\left(I_{0}-I_{L 3}\right)\left(L / V_{s}\right)$
- $I_{L 3}$ is a negative value

6.2 ZVS Resonant Converter X

Mode 5

- Mode 5: $t_{4}<t<t_{5}$
- Switch S_{1} is ON
- Diode D_{m} is OFF
- Load current I_{0} flows through the switch

6.2 ZVS Resonant Converter XI

- Mode 5 ends at time $t=t_{5}$, when switch S_{1} is turned OFF again and the cycle is repeated
- $t_{5}=T-\left(t_{1}+t_{2}+t_{3}+t_{4}\right)$
- Peak switch voltage $V_{T(p k)}$ is dependent on the load current $I_{0} \rightarrow$ Wide variation in the load current results in a wide variation of the switch voltage \rightarrow ZVS converters are used only for constant-load applications

6.3 Comparison of ZCS \& ZVS Resonant Converters I

- Both ZCS and ZVS techniques require a variable-frequency control to regulate the output voltage
- In ZCS, the switch is required to conduct a peak current which is higher than the load current I_{o}, by an amount V_{d} / Z_{o}
- In the ZVS topology, switch is required to withstand a forward voltage which is higher than V_{d}, by an amount $Z_{o} I_{o}$
- ZCS converters can eliminate the switching losses at turn-OFF and reduce the switching losses at turn-ON
- Relatively large capacitor is connected across the diode D_{m}
- Inverter operation becomes insensitive to the diodes junction capacitance
- Peak switch current in ZCS is much higher than that in a square wave
- ZVS eliminates the capacitive turn-on loss
- Suitable for high-frequency operation

6.3 Comparison of ZCS \& ZVS Resonant Converters II

- For both ZCS and ZVS, the output voltage control can be achieved by varying the frequency
- ZCS operates with a constant on-time control
- ZVS operates with a constant off-time control
- ZVS is preferable over ZCS at high switching frequencies
- Reason is related to the internal capacitances of the switch
- When the switch turns ON at zero current but at a finite voltage, the charge on the internal capacitance is dissipated in the switch \rightarrow loss becomes significant at very high switching frequencies. However, no such loss occurs if the switch turns on at a zero voltage

References

(1) Mohan, Undeland, Robbins, "Power Electronics Converters Application and Design", Wiley-India
(2) Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Pearson Education
(3) Abraham Pressman, "Switching Power supply Design", McGraw Hill

Thank You

*for_private_circulation only

